Railroad Hazardous Materials Transportation Risk Management Framework

Xiang Liu, Christopher P. L. Barkan, M. Rapik Saat
April 13, 2012
William W. Hay Railroad Engineering Seminar
Rail Transportation and Engineering Center (RailTEC)
Outline

• Overview of hazardous materials transportation by rail

• Analytical framework for risk management
 – Accident analysis
 • train accident frequency and severity
 • accident causes
 – Risk analysis
 • modeling of hazardous materials release risk
 • evaluation of risk reduction strategies
 – Decision analysis
 • Optimization of risk reduction strategies

• Proposed dissertation research
Overview of railroad hazardous materials transportation

- There were 1.7 million rail carloads of hazardous materials (hazmat) in the U.S. in 2010 (AAR, 2011)
- Hazmat traffic account for a small proportion of total rail carloads, but its safety have been placed a high priority

Hazardous materials, including TIH materials, are a small percentage of rail traffic but are responsible for a major share of rail insurance costs and liability risks.

Source: AAR analysis of 2008 STB Waybill Sample
Safety of railroad hazmat transportation

• 99.998% of rail hazmat shipments reached their destinations without a train-accident-caused release in 2008 (AAR, 2011)

• Train-accident-caused hazmat release rates have declined by about 90% since 1982
 – about 200 cars released per million carloads in 1982
 – about 21 cars released per million carloads in 2010

• Further improvement in the transportation safety remains a high priority of the rail industry and government
Influence diagram showing relationships of factors affecting hazardous materials transportation safety.
Railroad hazardous materials transportation risk management framework

INPUT
- Infrastructure Data
- Accident Data
- Traffic & Shipment Data
- Cost Data
- Other Data

Analytical framework

OUTPUT
- Optimal strategies to improve hazmat transportation safety
 - What to do
 - Where to do it
 - How to do it
Analytical models for risk management

- Accident Analysis
 - Train accident frequency and severity
 - Train accident causes

- Risk Analysis
 - Risk modeling
 - Evaluation of risk reduction strategies

- Decision Analysis
 - Optimizing risk reduction strategies
Analytical models for risk management

Analytical Framework

Accident Analysis
- Train accident frequency and severity
- Train accident causes

Risk Analysis
- Risk modeling
- Evaluation of risk reduction strategies

Decision Analysis
- Optimizing a combination of risk reduction strategies
FRA Rail Equipment Accident (REA) database

• The U.S. Federal Railroad Administration (FRA) Rail Equipment Accident (REA) database records all accidents that exceeded a monetary threshold of damages*

• The REA database records railroad, accident type, location, accident cause, severity and other information important for accident analysis and prevention

• This study focuses on Class I freight railroads (operating revenue exceeding $378.8 million in 2009), that account for
 – 68% of U.S. railroad route miles
 – 97% of total ton-miles
 – 94% of total freight rail revenue

*It accounts for damage to on-track equipment, signals, track, track structures, and roadbed. The reporting threshold is periodically adjusted for inflation, and has increased from $7,700 in 2006 to $9,400 in 2011.
Freight-train derailments on Class I mainlines by accident cause group: 2001-2010

- Track: 41%
- Equipment: 33%
- Human Factors: 14%
- Misc.: 11%
- Signals: 0.4%

Data source: FRA Rail Equipment Accident (REA) database, 2001 to 2010
Class I mainline freight-train derailment frequency by cause, 2001-2010

Top 10 causes account for 56% of derailments
Frequency-severity graph of Class I mainline freight-train derailments, 2001-2010

Average frequency = 89

Broken Rails or Welds

Average severity = 8.6
Freight-train derailment severity by cause, Class I mainlines, 2001-2010

Broken Rails or Welds
- Sample size: 458
- Mean: 14.2
- Standard deviation: 9.5
- 25% quantile: 7
- 50% quantile (median): 12
- 75% quantile: 19

Bearing Failures
- Sample size: 197
- Mean: 7.0
- Standard deviation: 9.6
- 25% quantile: 1
- 50% quantile (median): 1
- 75% quantile: 10

Include number of locomotives derailed
Proposed dissertation research in train accident analysis

• Modeling accident-cause-specific accident rate and severity
 – Develop a logistic regression model to estimate the probability that a train accident is due to a specific accident cause
 – Develop a negative binomial regression model to estimate the mean of number of cars derailed
 – Develop a quantile regression model to estimate the quantile distribution (e.g., median) of number of cars derailed

• Evaluate the effectiveness of specific accident prevention strategies
Analytical models for risk management

- Train accident frequency and severity
- Train accident causes

Risk modeling
- Evaluation of risk reduction strategies

Optimizing risk reduction strategies

Analytical Framework
Chain of events leading to hazmat car release

This study focuses on hazmat release rate

Accident Cause
- Track defect
- Equipment defect
- Human error
- Other

Influencing Factors
- Track quality
- Method of operation
- Track type
- Human factors
- Equipment design
- Railroad type
- Traffic exposure etc.

Train is involved in a derailment
- Number of cars derailed

Number of cars derailed
- Speed
- Accident cause
- Train length etc.

Derailed cars contain hazmat
- Number of hazmat cars in the train
- Train length
- Placement of hazmat car in the train etc.

Hazmat car releases contents
- Hazmat car safety design
- Speed, etc.

Release consequences
- Chemical property
- Population density
- Spill size
- Environment etc.
Modeling hazmat car release rate

\[P(R) = P(A) \times \left\{ \sum_{i=1}^{L} P(D_i | A) \times \left\{ \sum_{j=1}^{J} \left[P(H_{ij} | D_i, A) \times P(R_{ij} | H_{ij}, D_i, A) \right] \right\} \right\} \]

Where:

\(P(R) \) = release rate (number of hazmat cars released per train-mile, car-mile or gross ton-miles)

\(P(A) \) = derailment rate (number of derailments per train-mile, car-mile or gross ton-mile)

\(P(D_i | A) \) = conditional probability of derailment for a car in \(i^{th} \) position of a train

\(P(H_{ij} | D_i, A) \) = conditional probability that the derailed \(i^{th} \) car is a type \(j \) hazmat car

\(P(R_{ij} | H_{ij}, D_i, A) \) = conditional probability that the derailed type \(j \) hazmat car in \(i^{th} \) position of a train released

\(L \) = train length

\(J \) = type of hazmat car
Mainline train derailment rate, $P(A)$

- Derailment rate varies by FRA track class, method of operation and annual traffic density (MGT)

![Non-Signaled Territory Graph]

- Class I Mainline Train Derailment Rate per Billion Gross Ton-Miles

![Signaled Territory Graph]

- Class I Mainline Train Derailment Rate per Billion Gross Ton-Miles

FRA Track Class
Car derailment probability by position-in-train

\[P(D_i | A) \]

Source: FRA Rail Equipment Accident (REA) database, 2000-2009, Class I Mainline Derailment, All Accident Causes
Probability of a hazmat car derailed

\[P(H_{ij} | D_i, A) \]

- The probability that a derailed car contains hazardous materials depends on train length, number of hazmat cars in the train and hazmat car placement.

- Given train length and number of hazmat cars in a train, the “worst-case-scenario” is that hazmat cars are placed in the train positions most prone to derailment.
Conditional probability of release when a tank car* is derailed, $P(R_{ij} | H_{ij}, D_i, A)$

- Conditional probability of release (CPR) of a tank car reflects its resistance to the kinetic energy inflicted on it.
- Treichel et al. (2006) developed a logistic regression model to estimate tank car conditional probability of release given tank car configuration.
- Our analysis uses Kawprasert and Barkan’s model to estimate the conditional probability of release given tank car type and derailment speed.

*The majority (73% in 2010) of hazardous materials movements occur in tank cars. In this study, tank car is used as an example to assess hazmat release rate.
Application to segment-specific risk analysis

• The model can be used to evaluate segment-specific hazmat release rate and aid to develop and prioritize risk reduction strategies

• Sensitivity analyses were performed to analyze the relationship between tank car release rate and several train-related factors:
 – Train length
 – Number of tank cars in the train
 – Derailment speed
Estimated tank car release rates by train length and number of tank cars

Class 3 Track, Non-Signaled, Annual Traffic Density 5-20 MGT

Tank car type was assumed to be 105J500W
Estimated tank car release rates by number of tank cars and derailment speed

Class 3 Track, Non-Signaled, Annual Traffic Density 5-20 MGT

Tank car type was assumed to be 105J500W
Estimated tank car release rates by train length and derailment speed

Class 3 Track, Non-Signaled, Annual Traffic Density 5-20 MGT

Tank car type was assumed to be 105J500W
Summary of risk modeling

• Train length, derailment speed and number of tank cars affect estimated hazmat release rate per train-mile. When all else is equal,
 – A longer train results in a higher release rate
 – A greater derailment speed results in a higher release rate
 – A larger number of tank cars results in a higher release rate

• The model can be used to assess release rates for a variety of track and rolling stock characteristics
Analytical models for risk management

Analytical Framework

Accident Analysis
- Train accident frequency and severity
- Accident causes

Risk Analysis
- Risk modeling
- Evaluation of risk reduction strategies

Decision Analysis
- Optimizing risk reduction strategies
Hazardous materials transportation risk reduction strategies

• Basic strategies for reducing the probability of hazmat release incidents include:
 – Reduce tank car derailment rate by preventing various accident causes
 – Reduce release probability of a derailed tank car by enhancing tank car safety design and/or reducing train speed
Multi-attribute evaluation of risk reduction strategies using Pareto-optimality

Risk

Baseline risk

Dominated
Non-Dominated

Pareto frontier

Cost of risk reduction strategies
Net present value (NPV) approach to evaluate risk reduction strategies

\[NPV = \sum_{t=0}^{T} \frac{B_t - C_t}{(1 + A)^t} \]

Present Year 1 Year 2 Year 3 Year n

Benefit of a risk reduction strategy ($)

Cost of a risk reduction strategy ($)
Uncertainty in the NPV approach

- The NPV approach may be subject to uncertainty in terms of:
 - definitions of benefits and costs
 - assessment of the effectiveness of risk reduction strategies
 - estimation of economic benefits of safety improvements
 - discount rates
 - study periods
 - track and rolling stock characteristics on different routes

- Due to the uncertainty, the NPV may follow a random distribution
A hypothetical NPV distribution using Monte Carlo simulation

- It is assumed that
 - annual benefit B ($) \sim Normal $(1000,100)$
 - annual cost C ($) \sim Normal $(900,100)$
 - annual discount rate: 5% in 40 years study period

Number of simulations: 1,000,000
Mean: 4,101
Standard Deviation: 906
25% quantile: 3,490
50% quantile (median): 4,101
75% quantile: 4,711
Comparison of risk reduction strategies under uncertainty (scenario 1)

- The NPV2 is always greater than NPV1
Comparison of risk reduction strategies under uncertainty (scenario 2)

- Both NPV distributions have the same mean, but NPV2 has a smaller variance, thus may be preferred.
Comparison of risk reduction strategies under uncertainty (scenario 3)

- NPV2 has a larger mean, also a larger variance. The optimal decision may be based on the consideration of both the mean and variance.
Proposed dissertation research in risk analysis

• Risk modeling
 – Analyze the effect of parameter uncertainty on risk estimation

• Evaluation of risk reduction strategies under uncertainty
 – Consider means to reducing the uncertainty in the cost-benefit analysis
 – Consider the covariance between the benefit and cost estimation
Analytical models for risk management

Analytical Framework

- Train accident frequency and severity
- accident causes
- Risk modeling
- Evaluation of risk reduction strategies
- Optimizing risk reduction strategies
An example model to manage the risk of transporting hazardous materials on railroad networks

<table>
<thead>
<tr>
<th>Tank Car</th>
<th>Product</th>
<th>Accident Rate</th>
<th>Conditional Probability of Release</th>
<th>Hazard Consequence</th>
<th>Risk</th>
<th>Cost (Inspection, Detection, Maintenance, Upgrade, Operational Cost etc.)</th>
<th>Capacity</th>
<th>Demand</th>
</tr>
</thead>
</table>

Source: modified based on Lai et al. (2010)
Example integrated optimization model

Model Formulation

\[
\min \sum_{(i,j) \in A} \sum_{v \in V} \sum_{q \in Q} H_{ij}^{vq} y_{ij}^{vq} + \sum_{(i,j) \in A} \sum_{k \in K} \sum_{t \in T} C_{ij}^{kt} x_{ij}^{kt} + \sum_{(i,j) \in A} \sum_{v \in V} \sum_{q \in Q} R_{ij}^{vq} y_{ij}^{vq}
\]

Maintenance cost \hspace{1cm} Transportation cost \hspace{1cm} Risk cost

Subject to:

1. \[\sum_{k \in K} \sum_{t \in T} (x_{ij}^{kt} + x_{ji}^{kt}) \leq \sum_{v \in V} \sum_{q \in Q} U_{ij}^{vq} y_{ij}^{vq} \quad \forall (i, j) \in A, (i < j)\]
 - Capacity constraint

2. \[\sum_{v \in V} y_{ij}^{vq} = 1 \quad \forall (i, j) \in A, (i < j)\]
 - Track class and car composition constraint

3. \[\sum_{k \in K} (x_{ij}^{kt} + x_{ji}^{kt}) \leq \sum_{v \in V} \sum_{q \in Q} N_{i}^{vq} y_{ij}^{vq} \quad \forall (i, j) \in A, (i < j), t \in T\]
 - Linking constraint for decision variables

4. \[\sum_{j \in S(i)} x_{ij}^{kt} - \sum_{j \in S'(i)} x_{ji}^{kt} = \begin{cases} D_{kt} z_{ki} & \text{if } i \in s_{kt} \\ -D_{kt} z_{ki} & \text{if } i \in e_{kt} \\ 0 & \text{otherwise} \end{cases} \quad \forall i \in N, k \in K, t \in T\]
 - Flow conservation constraint

5. \[\sum_{i \in T} z_{ki} = 1 \quad \forall k \in K\]
 - Car type constraint

6. \[x_{ij}^{kt} \in \text{positive integer}, \quad \forall (i, j) \in A, k \in K, t \in T,\]
 - Decision Variables Constraint

7. \[y_{ij}^{vq} \in \{0, 1\}, \quad \forall (i, j) \in A, v \in V, q \in Q,\]

8. \[z_{ki} \in \{0, 1\}, \quad \forall k \in K, t \in T\]

Source: Lai et al. (2010)
Proposed dissertation research in decision analysis

- Multi-attribute decision making
 - Develop a multi-attribute utility model to consider risk attitudes and trade-offs among conflicting objectives

- Optimization
 - Consider the interactive effects of various risk reduction strategies
 - Develop an analytical model to identify the optimal set of risk reduction strategies under various constraints and uncertainty
Acknowledgements

Doctoral committee members
Christopher P. L. Barkan (advisor), Rapik Saat (co-advisor), Yanfeng Ouyang, Junho Song, Todd T. Treichel,

Assistance with Research
Nanyan Zhou
Athaphon Kawprasert
Bo Xu

Support for Research