William W. Hay Railroad Engineering Seminar

“Measuring and Modeling Differential Movement at Railroad Track Transitions”

Timothy Stark
Professor
University of Illinois at Urbana-Champaign

Date: Friday, January 30, 2015
Time: Seminar Begins 12:20
Location: Newmark Lab, Yeh Center, Room 2311

Sponsored by

[Images of railway and logo]
Measuring and Modeling Differential Movement at Railroad Track Transitions

Timothy D. Stark
Stephen T. Wilk
Jerry G. Rose
Yang Jiang
Congyue Fang
1. Identify problematic factors
2. Develop non-invasive measuring system
3. Evaluate design & repair measures
4. Dynamic numerical modeling
5. Substructure modulus
6. Summary
Identify Problematic Factors

- Open deck
- Wing walls
- Turn
- Fill height
- Soil type
- Fouling
- Poor drainage
- Grade crossing
- Rail joints
- Gaps

Stark et al. (2015)
Tie-Ballast Gap

- Six instrumented Amtrak sites
 - Wheel loads and vertical displacements with depth
- Upland Street
 - Upland (60 ft.) – Open track
 - Upland (15 ft.) – Transition zone

Stark et al. (2015)
Transient Vertical Displacements

Upland (60 ft.)
- Same Acela Power Car
- Upland (60 ft.) – good support
- Greater LVDT #1 transient vertical displacement (note different y-axis)
- LDVTs #2 to 5 delayed
- Erratic vertical displacements
- Rail rebound
- Identified tie-ballast gap

Upland (15 ft.)
- Upland (15 ft.) – poor support
Good Tie Support

- Loaded freight train, 25 mph

Stark et al. (2015)
Poor Tie Support

Stark et al. (2015)
Tie-Ballast Gap

Tie-Ballast Gap Model

- **Tie-ballast gap**
 - 0.25 mm v. 1.4 mm
- **Gap can increase with time**
 - Upland (15 ft.): 1.4 mm (January 2013)
 - Upland (15 ft.): 6.7 mm (July 2014)

Stark et al. (2015)

[Diagram and graph showing load-displacement behavior]
- Tie-ballast gap
 - <0.5 mm v. ~2.5 mm
- Norfolk Southern:
 - Loaded and unloaded cars
 - Model load-displacement curve

Stark et al. (2015)
Load Redistribution

- Limited knowledge from one tie-ballast gap (Tie 5):
 - Gaps at surrounding ties affect load distribution (numerical modeling)
 - Need gap heights of adjacent ties (accelerometers)
Outline

1. Identify problematic factors
2. Develop non-invasive measuring system
3. Evaluate design & repair measures
4. Dynamic numerical modeling
5. Substructure modulus
6. Summary
Non-Invasive Instrumentation

- Non-invasive instrumentation
 - Accelerometers ➔ Tie accelerations & loads (heartbeat)
 - High-speed video cameras ➔ Rail and tie displacements
- 10 field sites
 - Good and poor support

Stark et al. (2015)
Accelerometers

- Indicators of poor tie support
- Greater tie acceleration
 - 30g v. 5g
 - < 5g is good support
 - $F = m \cdot a$

Stark et al. (2015)
High Speed Video Cameras

- 8 accelerometers & 2 video cameras
- Reoccurring track geometry problems
- **Rail-tie (#2) & Tie-ballast gap (#3)**
 - Rail and tie displacements
 - Tie accelerations
 - Double integration
 - Centerbound tie
 - Effect of air tamping

Stark et al. (2015)
C#2 (14 ft.): Rail-Tie Gap

- Large rail displacement (~0.4 inches; 7 mm)
 - Matches unloaded gap height
- Small tie displacement

Stark et al. (2015)
C#2 (14 ft.): Rail-Tie Gap

- Large rail displacement (≈0.4 inches; 10 mm)
- Some rail rebound (≈-0.1 – 0.2 inches; 3 – 5 mm)
- Small tie displacement

Stark et al. (2015)
C#3 (20 ft.): Rail & Ballast Gap

- Full time history
- Both rail and tie displacement
 - Rail: ~0.2 in (~5 mm)
 - Tie: ~0.25 in (~6 mm)
- Less rail movement than C#2

Stark et al. (2015)
Both rail and tie displacing
Greater tie displacements b/c tie bending
Centerbound tie?
Summarize C#2 (14 ft.) v. C#3 (20 ft.)

- Greater rail displacement near bridge (C#2)
 - Greater substructure settlement - cantilevered

Stark et al. (2015)
Accelerometers

Accel #2 (14 ft.)

Accel #3 (20 ft.)

~10g

~20g

Tank Cars

All responses >5g!

Stark et al. (2015)
Accelerometers v. Video Cameras

- Target and accelerometer on tie
- Camera v. double integration
- Similar vertical displacements

Stark et al. (2015)
• Compare Accel #3 & #4
• Similar tie accelerations (~20g)
 – More wheel flats at #4

Stark et al. (2015)
• 1st axle after tamping at Tie #2 (14 ft.)
 – 0.25” – rail and permanent tie ΔV
Pre- & Post-Tamping – C#2 (14 ft.)

- Pre-tamping v. 6th train after tamping
- Smaller rail-tie gap (0.4” v. 0.3”)
 - Rail cantilevering again
- Similar tie-ballast behavior

Stark et al. (2015)
Two Transitions

66 ft.

Stark et al. (2015)
Effect of Train Direction

- T5 southbound v. T7 northbound
- Train direction large effect on Accel #7 & #8
 - Bouncing from crossing and bridge
 - Not observed at Accel #1 to #6

Accel #8 (51 ft.)

Accel #7 (36 ft.)

Train T5 (Loaded, 40 mph)
Train T7 (Mixed, 52 mph)

Stark et al. (2015)
Future Non-Invasive Work

- Permanent installation
- Environmental and seasonal changes
1. Dip/gap development
2. Develop non-invasive measuring system
3. Evaluate design & repair measures
4. Dynamic numerical modeling
5. Substructure modulus
6. Summary
• Hastings, MN
Transition Zone Scorecard

- Minimize differential transient and permanent displacements

- Questions:
 - Which components need to be addressed?
 - How to address them in most cost-effective manner?

- Measure performance:
 - Accelerometers
 - High-speed video cameras

<table>
<thead>
<tr>
<th>Transition and Bridge Displacement Component</th>
<th>Noticeable Transient</th>
<th>Noticeable Permanent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail compression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rail-tie gap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tie pad/plate displacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tie displacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tie-ballast gap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballast displacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subballast displacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgrade displacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral displacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stark et al. (2015)
Open Bridge Deck

- Timber tie open bridge deck
 - Tie-ballast gaps
 - Ballast, subballast, and subgrade displacement
 - Lateral displacement

<table>
<thead>
<tr>
<th>Transition and Bridge Displacement Component</th>
<th>Noticeable Transient</th>
<th>Noticeable Permanent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail compression</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rail-tie gap</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tie pad/plate displacement</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tie displacement</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tie-ballast gap</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ballast displacement</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Subballast displacement</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Subgrade displacement</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lateral displacement</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Stark et al. (2015)
Well-Performing Design

- Design attributes
 - Ballasted bridge deck
 - HMA underlayment
 - Consolidated fill
 - Concrete wing walls

<table>
<thead>
<tr>
<th>Transition and Bridge Displacement Component</th>
<th>Noticeable Transient</th>
<th>Noticeable Permanent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail compression</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rail-tie gap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tie pad/plate displacement</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tie displacement</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tie-ballast gap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballast displacement</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Subballast displacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgrade displacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral displacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Rail

- Tie 4
- Tie 3
- Tie 2
- Tie 1
- Tie A
- Tie B

Ballast

- HMA layer
- Subballast
- Subgrade

Stark et al. (2015)
1. Dip/gap development
2. Identify problematic factors
3. Develop non-invasive measuring systems
4. Evaluate design & repair measures
5. Dynamic numerical modeling
6. Substructure modulus
7. Summary
Gap Model

\begin{verbatim}
LS-DYNA keyword deck by LS-PrePost
Time = 0
\end{verbatim}

Stark et al. (2015)
Open Track – Load Redistribution

Stark et al. (2015)
Magnitude of Tie-Ballast Gap = ?

- Tie-ballast gaps > 1 mm → Increase applied loads

Field Measurements

- Tie-ballast gaps > 1 mm → Increase applied loads

Laboratory Box Tests

- Tie-ballast gap → Permanent vertical displacements
- Load redistribution – numerical modeling
- Impact loads - accelerometers

(Selig and Waters, 1994)
Bridge Approach Model

Stark et al. (2015)
• Time history v. distance from abutment (decouple front and back wheels)

• Load amplification
 – 30% increase about 10 feet (5 ties) from abutment

• **Tie-ballast gap** load amplification
 – 200% increase of tie-ballast load

Stark et al. (2015)
Outline

1. Dip/gap development
2. Develop non-invasive measuring system
3. Evaluate design & repair measures
4. Dynamic numerical modeling
5. Substructure modulus
6. Summary
• **Ballast Seismic Property Analyzer (BSPA)**
 • Measure modulus using seismic waves
 – Impact hammer and accelerometers
 – Raleigh wave velocity (V_r)
• Non-invasive, portable
• BSPA orientations
 – Across tie (center)
 – Across tie (ends)
 – Parallel to tie
Substructure Modulus

- Track geometry problems
 - Substructure settlement due to low modulus
- Optimal ballast density
 - Loose ballast state after placement and tamping
 - Relate to modulus
 - Achieve desired modulus
- Subballast/subgrade modulus
- Effect of fouling
Ballast Modulus – Fouling

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Seismic Testing</th>
<th>Young’s Modulus (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry & Wet Clean Ballast</td>
<td></td>
<td>30 – 40</td>
</tr>
<tr>
<td>Dry Fouled Ballast</td>
<td></td>
<td>50 – 55</td>
</tr>
<tr>
<td>Wet Fouled Ballast</td>
<td></td>
<td>20 - 25</td>
</tr>
</tbody>
</table>

- **Upland (60 ft.)**
 - January 2015 (Rain) ~29 ksi
 - June 2015 ~55 ksi
 - 47% reduction

Stark et al. (2015)
Additional Applications

- **Tie integrity**
 - Relate to tie modulus
 - Both concrete and timber ties

Stark et al. (2015)
Summary

• Differential transient and permanent displacements lead to dip
• Account for all displacements in bridge repair & design
• Poor track support
 – Higher tie accelerations (>5g) – Impact loads
 – Higher rail and/or tie displacements
 – Load redistribution
 – Impact loads at bridge approach
• Permanent site
• BSPA
 – Measure field ballast modulus
 – Effect of fouling
 – Tie integrity
1. New or freshly tamped track

2. Loading causes transient vertical displacements and ballast rearrangement.

3. Rail pulls tie up creating tie-ballast gap and other gap(s).
4. Rail can cantilever

5. Increased ballast loads from tie-ballast gap – $F = ma$ & accelerometers

6. TOR developing permanent vertical displacements/“Dip” in transition zone
Acknowledgments

- Federal Rail Administration
 - Hugh Thompson, Ted Sussumann, & Cam Stuart
- Amtrak – Dave Staplin, Steve Chrismer (LTK), and Mike Tomas
- CSX - Ed Sparks and Chris Garrett
- P&L - Tom Garrett and Gerald Gupton
- TTI – Russ Rogers
- UP – Caleb Douglas
- University of Kentucky
 - Drs. Jerry Rose & Reginald Souleyrette
 - Macy Purcell & John Magner
 - Jordan Haney & Alex Wang
- University of Illinois at Urbana-Champaign
 - Yang Jiang & Arthur Tseng
 - Congyue Fang
- FRA Seismic Testing & Transitions Projects
 - Carl Ho, Soheil Nazarian, Mark Baker, Erol Tutumluer, Jim Hyslip, and Deb Mishra
Measuring and Modeling Differential Movement at Railroad Track Transitions

Timothy D. Stark
Stephen T. Wilk
Jerry G. Rose
Yang Jiang
Congyue Fang