“Freeze-Thaw Durability of Concrete Crossties”

David Lange
Professor
University of Illinois at Urbana-Champaign

Date: Friday, March 04, 2016
Time: Seminar Begins 12:20 pm
Location: Newmark Lab, Yeh Center, Room 2311
University of Illinois at Urbana-Champaign

Sponsored by

William W. Hay Railroad Engineering Seminar

University of Illinois at Urbana-Champaign
Freeze-Thaw Durability of Concrete Crossties

Prof. David A. Lange
William W. Hay Railroad Engineering Seminar
March 4, 2016
FRA BAA Project
Prof. Kyle Riding, Kansas State
Prof. David Lange, UIUC
and Prof. Randy Ewoldt, UIUC
2012-2015

Final Project Presentation was on Jan 28, 2016
Freeze-thaw durability

- Damage requires near-saturated conditions
 - Can a crosstie be critically saturated in well draining ballast?
- Damage requires many freeze-thaw cycles
 - Midwest climate is more severe than the arctic!
What about air entrainment?

- Air entraining admixtures
Goals: Improve understanding of…

- How air bubbles respond to vibration.
- Actual conditions of crossties in track.
- How to produce ties with better freeze-thaw resistance.
- New testing methods to assess freeze-thaw performance.
Report contents

- Chapter 1: Introduction
- Chapter 2: Bubble Mechanics Theory
- Chapter 3: Bubble Mechanics Validation
- Chapter 4: Role of Aggregates During Vibration
- Chapter 5: Vibration-Rheology-Material Interplay
- Chapter 6: Concrete Railroad Tie Fabrication
- Chapter 7: Tie Field Temperature & Humidity
- Chapter 8: Degree of Saturation Determination
- Chapter 9: Freeze-Thaw Potential in Track
- Chapter 10: Freeze-Thaw Sample Preparation
Rheology of Concrete

• Concrete exhibits a yield stress at rest
• Vibration defeats yield stress
Rheology of Concrete

- **Concrete**
 - Stress (Pa)
 - Shear rate (1/s)

- Equation: $y = 4475 + 1356 \times x$
 - Yield Stress: 4475 Pa
 - Plastic Visc: 1356 Pa.s
Theory for bubble rise

- All bubbles are stable when concrete has yield stress is at rest
- Bubbles rise under buoyant forces in a viscous fluid with no yield stress
- Vibration defeats yield stress
- Terminal velocity of a hard sphere:

\[
\frac{1}{6} \pi \Delta \rho g D^3 = 3 \pi \mu U D
\]

\[
U = \frac{1}{12} \frac{\Delta \rho g D^2}{\mu}
\]

So, very small bubbles are relatively stable
Vibration with air entrainment

• Vibrate fresh materials and measure fresh air content
• Air loss is prominent when aggregates are present
Rheology during vibration

- Simple yield stress fluids (Bingham) with aggregates
- Shows influence of vibration

Dim symbols: No vibration
Solid symbols: Sample is vibrated
Granular Physics

- Roscoe’s Equation predicts the viscosity increase when particles are added to a fluid. From paste to concrete:

\[
\mu_{\text{mortar}} = \mu_{\text{paste}} \left(1 - \frac{1}{r} V_{\text{sand}}\right)^{0.89m-9.31} \quad \mu_{\text{conc}} = \mu_{\text{mortar}} \left(1 - \frac{1}{r} V_{\text{coarse}}\right)^{0.57m-3.40}
\]

- Vibrated granular constitutive model predictions:

 \[
 \sigma = G\gamma_c + \eta_H \dot{\gamma}
 \]

 Bingham

 \[
 \sigma = \left[\frac{G}{f_b} + \eta_H\right] \dot{\gamma}
 \]

 Newtonian!

Practical Implication: “Cone of Action”

- A consequence of depth-dependent rheology: failure angle
- Theoretical prediction:
 \[\theta_f = \frac{\pi}{4} + \frac{\alpha}{2} \]
 \(\alpha = \) angle of repose
- Consequence: effect of vibration is not uniform, leading to inhomogeneous air distribution
Air Content under Vibration

- Vibrated concrete is quasi-Newtonian
- Model explains experimental observations
- We can predict air bubble size distribution:

![Graph showing air bubble size distribution with and without vibration](image-url)
Bubble Rise simulations

• Large bubbles rise and leave quickly
• Small bubbles endure due to D^2 law

• Model explains how VISCOSITY under VIBRATION controls AIR LOSS
• DURATION of vibration is key
• Suggests: There exists an ideal viscosity for maintaining air distribution
• And we control viscosity via concrete mix design
How is vibration damped?

• Vibration of beam samples
• Accelerometers measure vibration energy

Table 4.5 Bingham parameters of fresh concrete, mortar, and paste with varying aggregate content

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Yield Stress (Pa)</th>
<th>Plastic Viscosity (Pa.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortar – 0% FA; 100% CP</td>
<td>164.2</td>
<td>31.8</td>
</tr>
<tr>
<td>Mortar – 20% FA; 80% CP</td>
<td>114.2</td>
<td>49.1</td>
</tr>
<tr>
<td>Mortar – 40% FA; 60% CP</td>
<td>90.1</td>
<td>68.3</td>
</tr>
<tr>
<td>Mortar – 60% FA; 40% CP</td>
<td>276.6</td>
<td>423.7</td>
</tr>
<tr>
<td>Concrete – 0% CA; 40% FA; 60% CP</td>
<td>207.3</td>
<td>10.5</td>
</tr>
<tr>
<td>Concrete – 22% CA; 40% FA; 38% CP</td>
<td>130.1</td>
<td>22.8</td>
</tr>
<tr>
<td>Concrete – 33% CA; 34% FA; 33% CP</td>
<td>208.5</td>
<td>33.5</td>
</tr>
<tr>
<td>Concrete – 45% CA; 28% FA; 27% CP</td>
<td>467.3</td>
<td>101.1</td>
</tr>
</tbody>
</table>
Loss of Air due to Vibration

- Paste shows no air loss
- Concrete has high air loss

Blue dot – no vibration
Red square – after vibration

Paste samples

Concrete samples
Plant Testing

• Three plants visits. (1 month stays for 2 plants; 4 days for 3rd plant)
• Testing in these plants included:
 • Slump
 • Fresh and hardened air content
 • Unit weight
 • Temperature
 • Rheology
 • Vibration
Plants Vibration

- Three plants visits. (1 month stays for 2 plants; 4 days for 3rd plant)
- Testing in these plants included rheology and vibration

Plant A
vibration rods attached to the casting machine.

Plant B
vibrator under forms

Plant C
used handheld vibrator
Plants Vibration

- The accelerometers used to measure vibrations.
Confirmed:
Handling & vibration drives air from concrete

- Average hardened air content:

<table>
<thead>
<tr>
<th>Location in the Manufacturing Process</th>
<th>Plant A</th>
<th>Plant B</th>
<th>Plant C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixer (M)</td>
<td>9.2</td>
<td>8.5</td>
<td>7.8</td>
</tr>
<tr>
<td>Before Vibration (BV)</td>
<td>8.0</td>
<td>7.5</td>
<td>6.8</td>
</tr>
<tr>
<td>After Vibration (AV)</td>
<td>6.0</td>
<td>5.5</td>
<td>5.3</td>
</tr>
</tbody>
</table>
What are field conditions of concrete crossties?
Field testing

• **Locations:**
 - Lytton, British Columbia
 - Rantoul, IL

• **Parameters**
 - Temperature
 - Internal relative humidity
Instrumentation

• Install **humidity & temperature** sensors inside crosstie at rail seat area during manufacturing
Installing instrumented crossties

Lytton, BC
Installing instrumented crossties
Model to predict temp/RH history on basis of local weather station data

- Key findings:
 - Concrete is persistently high moisture in winter
 - Concrete temps DO experience significant cycling
 - Concrete FT cycles ~ 0.7X ambient weather
 - Crossties received 70 FT cycles/yr
How should we test crossties?
How should samples be taken?
Extensive FT testing

Full ties
FT tests
Half ties
Excised prisms
Cast prisms
Sawcut ties perform poorly

- Large samples (half-ties) vs. excised samples from the same ties
Summary

• We developed new models for vibration and air
• We documented true field conditions of crossties
• We proposed new guidelines for making durable concrete
• We proposed new approaches for production specification language
• We recommended quality control approaches

• Better understanding of distress mechanisms leads us to improve product performance!