Tie and Fastener Research at TTCI

Mike McHenry
Tie and Fastener Research at TTCI – Outline

♦ TTCI Site Overview
♦ Tie Fastener Research Overview
♦ A Flavor of AAR Funded Tie/Fastener Research Tasks
 ● Ballast-tie interface pressure measurement
 ● Under-tie ballast imaging
 ● Lateral Track Loading Fixture (LTLF) testing
 ● Other ongoing data collection and tasks
♦ Developing a tie/fastener degradation costing model
♦ Summary
Tie and Fastener Research at TTCI

♦ FRA funded research
♦ Commercial/proprietary research
♦ AAR funded research:

● Objective:
 ▲ Improve the performance of track through improvements of the tie/fastener system
● End Product(s):
 ▲ Improved performance tie/fasteners, better recommendations for implementing improved performance systems, better understanding of where and why failures occur
Ballast-Tie Interface Pressure Measurement

- Characterizing the load environment on the underside of the tie
- Ballast-tie “peak pressures” measured under HAL
- Laboratory and in-track testing
- Sensor measures fine-scale distribution
- A means to quantify ballast degradation and effect on load environment
- Two reports published for 2014
Ballast-Tie Interface Pressure Measurement

<table>
<thead>
<tr>
<th>Ballast Material</th>
<th>Average Peak Pressure @ 20 kip applied</th>
<th>Percent of Uniform Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>283.9 psi</td>
<td>399%</td>
</tr>
<tr>
<td>Pea Gravel</td>
<td>444.1 psi</td>
<td>624%</td>
</tr>
<tr>
<td>H. Degraded Ballast</td>
<td>681.3 psi</td>
<td>958%</td>
</tr>
<tr>
<td>Mod. Degraded Ballast</td>
<td>929.7 psi</td>
<td>1307%</td>
</tr>
<tr>
<td>New Ballast</td>
<td>1449.9 psi</td>
<td>2036%</td>
</tr>
</tbody>
</table>

(a) New Ballast
(b) Mod. Degraded Ballast
(c) Heavily Degraded Ballast
(d) Pea Gravel
(e) Sand
Ballast-Tie Interface Pressure Measurement

- Peak areas of pressure were adjacent to the rail (tamped area) in 60% of tests
- Distribution varies significantly from that proposed in AREMA
Section 3 Concrete Tie Test Zones:

- **Zone 1 (190 Half-Frame Ties 24” Spacing)**
 - 4 Clips per Tie

- **Zone 2 (100 Conventional Ties Control Zone 24” Spacing)**
 - 6 Clips per Tie

- **Zone 3**
 - 100 CXT 200GBP Ties Factory Installed Under Tie Pads 24” Spacing

- **Zone 4**
 - 100 Used Conventional Ties Field Installed Under Tie Pads 24” Spacing

- **Zone 5 (63 Used Conventional Ties 20” Spacing)**

Reconfigured after 140 MGT from 8 clips/tie to 6 clips per tie due to end tab cracking
Section 3 Ballast Degradation Imaging Analysis

- To determine the reduction in ballast degradation, if any, observed beneath under tie pads and half-frame ties
- Full cross-sectional trenches were dug and ballast images collected – data currently being analyzed
- Working with University of Illinois to quantify particle size to compare the five test zones
- If ballast is lasting longer, ties are performing one of their key functions better = cost savings
Section 25 – Lateral Track Loading Fixture (LTLF) Tests

- Test to indicate gage restraint of tie/fastener systems

- Wood ties w/ AREMA 14” plates - control
- 2 Composite tie zones – 1400+ MGT
- Concrete tie zones – 800 MGT
- Wood tie w/ elastic fasteners – 800 MGT

- Applying load as traditionally done on the web as well as at the head of the rail – increased resolution?
Section 25 – Lateral Track Loading Fixture (LTLF) Tests

Average Gage Widening at Head for Four Tie/Fastener Systems at 650 MGT

- **Rocola Concrete**
 - Pandrol Safelok I
 - Zone 4

- **Mixed Hardwood**
 - Pandrol Victor, e-clip, drive spike hold down Zone 0B

- **Mixed Hardwood**
 - AREMA 18", cut spikes
 - Zone 13

- **Mixed Hardwood**
 - AREMA 14", cut spikes
 - Zone 1
Section 25 – Lateral Track Loading Fixture (LTLF) Tests

Average Gage Widening for Four Wood Tie/Fastener Systems at 650 MGT

- Gage widening at head
- Gage widening at base

<table>
<thead>
<tr>
<th>System</th>
<th>Gage Widening at Head</th>
<th>Gage Widening at Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Hardwood</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Pandrol Victor, e-clip, cut</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>spike hold down Zone 0A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Hardwood</td>
<td>0.15</td>
<td>0.25</td>
</tr>
<tr>
<td>Pandrol Victor, e-clip, drive</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>spike hold down Zone 0B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Hardwood</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>AREMA 18”, cut spikes Zone 13</td>
<td>0.15</td>
<td>0.25</td>
</tr>
<tr>
<td>Mixed Hardwood</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>AREMA 14”, cut spikes Zone 1</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

WEB APPLIED LOAD = 9 KIPS
Section 25 – Lateral Track Loading Fixture (LTLF) Tests

Key findings/results:
- Applying load at head does not appear to increase resolution in data for elastic fastening systems – too small of displacements.
- Applying load at head increased gage widening resolution for AREMA plates/cut spikes however.
- No difference seen in gage restraint for cut spike hold downs vs. drive spike hold downs on Pandrol Victor plates after 650 MGT.
- Elastic fasteners on wood ties:
 - Roughly 2x higher gage restraint than 18” AREMA plates
 - Roughly 3x higher gage restraint than 14” AREMA plates
 - Similar gage restraint performance to concrete ties
Other ongoing data analysis

- Crib ties:
 - Panel shift test
 - Track stiffness
 - Gage restraint (GRMS and LTLF)
- Cont. analysis of maintenance records
 - Tie plate breakage
 - Screw/drive spike breakage
- Geometry data
 - Correlating track geometry data with tie/fastener test zones at FAST
 - Geometry history for revenue service install of Half-Frame ties
Tie/Fastener Degradation and Costing Analysis

- Focus of the project thus far has been testing specific tie/fastener systems and quantifying their relative performance.
- The next step is to understand why – i.e. the driving factors.
- Proposed: an analysis to quantify “real world” performance.
 - Creating a database of Class I tie lifecycle data.
 - Correlating this data to mechanistic load environment.
 - e.g. plate size/stress to plate cutting potential.
 - Location of hold down spike to tendency for spike failure.
 - Enhancements to Railway Track Lifecycle Model (RTLM).
- Ultimate goals:
 - More informed forecasting/planning/purchasing.
 - Better recommendations for design.
 - Better assessment of cost vs. benefit.
Developing Tie Degradation/Costing Analysis

- Characterizing load environment
- Laboratory testing
- Field verification
- Mechanistic behavior

GOAL: understanding of the factors that drive tie/fastener performance

- Database of tie
 - Location
 - Tonnage
 - Age
 - Geometry
 - Curvature
 - Climate
Summary:

- Ballast-tie interface data – a step towards quantifying the true pressure distribution on the underside of the tie
 - High ballast pressures lead to increased deterioration
 - Can the tie be improved to reduce this effect?
- Ballast x-section imaging will quantify degradation
 - Savings due to larger footprint ties and under-tie pad treatments?
- Gage restraint measurement using LTLF
 - Little significant degradation thus far
 - Gage restraint appears to be more inherent to the fastening system until a failure occurs.
- Developing a degradation and costing approach
 - Mechanistic analysis and laboratory testing to characterize load environment
 - Correlating failure mechanisms with load environment and climate
 - Lifecycle and failure data from railroads/subdivisions will be vital
 - A better approach to cost vs. benefit
Thank you for your time

Questions?

Tie and Fastener Research at TTCI