Optimal Grade Crossing Project Selection for Improved Running Time on Passenger Rail Corridors

C. Tyler Dick, P.E.
University of Illinois at Urbana-Champaign

Brennan M. Caughron
BNSF Railway

Global Level Crossing Safety Symposium - August 5th, 2014
Demand for Passenger Service Upgrades

- New Amtrak ridership record 10 of past 11 years… 31.6 million in FY13
- Amtrak ridership is growing faster than any major travel mode
- Continued interest in increasing the frequency and speed of intercity passenger rail service on shared rail corridors
- Increase passenger trains speed and frequency at grade crossings
- Passenger rail corridor development must be supported by investment in grade crossing infrastructure
Track Speed and Grade Crossing Upgrades

- 40 mph: Passive (~$1,000)
- 60 mph: Active (~$100,000)
- 80 mph: Quad gates (~$1,000,000)
- 90 mph: Impenetrable Barrier (~$10,000,000)
- 110 mph: >125 mph: Grade Separation

Track speed categories and their corresponding crossing upgrade costs.
Passenger rail corridor involves a series of integrated systems.
“Go Fast by Not Going Slow…”

- Class 1: 240 seconds
- Class 2: 120 seconds
- Class 3: 60 seconds
- Class 4: 45 seconds
- Class 5: 40 seconds
- Class 6: 33 seconds
- Class 7: 29 seconds
- Class 8: 23 seconds
- Class 9: 18 seconds

Time per Mile (seconds) vs. Speed (MPH)
Ultimate Project Selection

- Corridor Investments
- Costs
- Planning Horizon
- Discount Rate
- Net Present Value
- Budget
- Service Targets

Transportation Utility

- Run Time
- Reliability
- Frequency

Passenger Demand → Ridership → Revenue

Net Present Value
Present Model Scope

- Run Time
- Transportation Utility
 - Reliability
 - Frequency
- Corridor Investments
- Costs
- Planning Horizon
- Discount Rate
- Net Present Value
- Budget
- Service Targets

Flow:
- Passenger Demand → Ridership → Revenue → Net Present Value → Budget
- Planning Horizon → Discount Rate → Planning Horizon
- Corridor Investments → Costs
Project Benefits Depend on Boundary Conditions

![Graph showing speed 'A' and speed 'B' with segments 1, 2, and 3 labeled.](image)
Opportunities to Reduce Running Time

- Improvements can be made to address schedule minimum run time and schedule reliability
- Improvement projects have different impacts on both schedule components

Schedule minimum run time
- Infrastructure
 - Track structure
 - Track geometry
 - Signals
 - Grade crossings
- Rolling stock
 - Acceleration
 - Top speed
 - Curving performance

Schedule reliability (uncertainty)
- Single vs. double track
- Siding length and spacing
- Capacity utilization
 - Existing capacity
 - Other rail traffic
- Station dwell
- Passenger delays
Model Objective Function

Minimize Total Running Time:

\[
\sum_{n=1}^{N} \sum_{s=0}^{S} \sum_{t=1}^{T} \theta_{n,t} l_n \delta_s v_{n,s,s^*,t} + \sum_{n=2}^{N} \sum_{s=0}^{S} \sum_{s^*=0}^{S} \sum_{t=1}^{T} \theta_{n,t} \tau_{s,s^*,t} z_{n,s,s^*,t}
\]

- Segments
- Trains
- Speeds
- Segment length
- Segment specific train time weight factor
- Unit running time at speed ‘s’
- Segment train speed (1,0)
- Acceleration/Braking Delay
- ABD link variable (1,0)
Model Constraints (1 of 2)

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\sum_{n=1}^{N} \sum_{c=0}^{C} x_{n,c} p_{n,c} \leq B]</td>
<td>Budget constraint</td>
</tr>
<tr>
<td>[\sum_{s=0}^{S} v_{n,s,t} \sigma_s \leq \sum_{c=0}^{C} x_{n,c} v_c]</td>
<td>Train speed < infrastructure speed</td>
</tr>
<tr>
<td>[z_{n,s,s^,t} \leq v_{n,s^,t}] (\forall n, s, s^*, t)</td>
<td>Acceleration and braking link (1)</td>
</tr>
<tr>
<td>[z_{n,s,s^,t} \leq v_{n-1,s,t}] (\forall n, s, s^, t)</td>
<td>Acceleration and braking link (2)</td>
</tr>
<tr>
<td>[z_{n,s,s^,t} + 1 \geq v_{n,s^,t} + v_{n-1,s,t}] (\forall n, s, s^*, t)</td>
<td>Acceleration and braking link (3)</td>
</tr>
<tr>
<td>[l_n - a_{n,t} - b_{n+1,t} \geq 0] (\forall n, t)</td>
<td>Segment acceleration and braking dist.</td>
</tr>
</tbody>
</table>
Model Constraints (2 of 2)

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Description</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_{n,t} \geq \sum_{s=0}^{S} v_{n-1,s,t} \beta_{s,t} - v_{n,s,t} \beta_{s,t} \quad \forall \ 2 \leq n \leq N, t)</td>
<td>Braking distance</td>
<td>(8)</td>
</tr>
<tr>
<td>(a_{n,t} \geq \sum_{s=0}^{S} v_{n,s,t} \alpha_{s,t} - v_{n-1,s,t} \alpha_{s,t} \quad \forall \ 2 \leq n \leq N, t)</td>
<td>Acceleration distance</td>
<td>(9)</td>
</tr>
<tr>
<td>(\sum_{s=0}^{S} v_{n,s,t} \sigma_s \leq h_{n,t} \quad \forall \ n, t)</td>
<td>Station stopping constraint</td>
<td>(10)</td>
</tr>
<tr>
<td>(\sum_{s=0}^{S} v_{n,s,t} = 1 \quad \forall \ n, t)</td>
<td>One operating speed per service on each segment</td>
<td>(11)</td>
</tr>
<tr>
<td>(\sum_{c=0}^{C} x_{n,c} = 1 \quad \forall \ n)</td>
<td>One track maximum speed on each segment</td>
<td>(12)</td>
</tr>
</tbody>
</table>
Train Performance Calculator Constraints

\[Z_{n,s,s^*,t} \leq v_{n,s^*,t} \quad \forall \ n, s, s^*, t \]
\[Z_{n,s,s^*,t} \leq v_{n-1,s,t} \quad \forall \ n, s, s^*, t \]
\[Z_{n,s,s^*,t} + 1 \geq v_{n,s^*,t} + v_{n-1,s,t} \quad \forall \ n, s, s^*, t \]
Minimum Upgrade Length Constraints

\[L_2 - a_2 - b_3 \geq 0 \]

\[L_2 - a_2 - b_3 < 0 \]
Case Study – Porter, IN to St. Joseph, MI

- One round trip frequency per day
- Route length of 176 mi
- 79 MPH maximum speed
- 44 MPH average speed (good case for improvement)
- Annual ridership 106,662 (FY ‘11)
- Selected segment from Porter to St. Joseph for current PSM case study
- Added hypothetical commuter rail service to demonstrate functionality of model
Upgrade Treatments

<table>
<thead>
<tr>
<th>Track Class</th>
<th>Maximum Train Speed (MPH)</th>
<th>Track Structure</th>
<th>Signal System</th>
<th>Grade crossings / Misc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 3</td>
<td>60</td>
<td>Replace 1/3 Cross Ties (wood), 136RE CWR, Surfacing</td>
<td></td>
<td>Curve shift</td>
</tr>
<tr>
<td>Class 4</td>
<td>80</td>
<td>Replace 1/3 Cross Ties (wood), 136RE CWR, Surfacing</td>
<td>CTC</td>
<td>Curve shift</td>
</tr>
<tr>
<td>Class 5</td>
<td>90</td>
<td>Replace 1/3 Cross Ties (wood), 136RE CWR, Surfacing</td>
<td>CTC/AT S/ATC</td>
<td>Curve shift, Four quad gate crossings</td>
</tr>
<tr>
<td>Class 6</td>
<td>110</td>
<td>Replace 2/3 Cross Ties (wood), 136RE CWR, Surfacing</td>
<td>CTC/AT S/ATC</td>
<td>Curve shift, four quad gate crossings with intrusion detection, fenced ROW</td>
</tr>
</tbody>
</table>
Case Study Input Parameters

- Capital costs from Quandel Consultants (2011)
- Discount rate 5%, 10 year period
- Equal train running time weights (alpha 1 = alpha 2)
- Identical train consists for each service (1 loco, 6 coach, 1 NPCU*)
- Acceleration and braking performance from simplified TPC

Solution
- Mixed Integer Program (MIP) with GUROBI 5.0 solver
- 1-2 minutes to optimal solution for each scenario

* NPCU = Non-Powered Cab Unit
Initial vs. Final Condition ($45M)
Service Speeds ($45M)

Maximum Express Commuter

Distance (mi.)

Speed (MPH)
Change in Speed and Segment PV Cost ($45M)

- Change in Speed
- Cost

Improvement (MPH)

Distance (mi.)

Present Value Cost ($M)
Grade Crossing Improvements

- Improved crossings shown in orange
- Only a subset of crossings are improved corresponding to segments with speed improvement
- Crossings near speed restrictions and unimproved segments do not need to be upgraded, minimizing investment
Service Running Time vs. PV Cost

- Commuter Service
- Express Service

Running Time (min) vs. Present Value Cost ($M)
Running Time Reduction vs. PV Cost

- X-axis: Present Value Cost ($M)
- Y-axis: Running Time Reduction (min)
- Graph shows the relationship between running time reduction and present value cost.
Summary

• Grade crossings and protection devices are one part of the integrated passenger rail corridor system
• Can’t view in isolation due to interactions and train performance
• Requires a corridor approach to evaluate benefit of projects
• Optimization can prioritize and target investment for maximum return and suggest appropriate budgets for corridor upgrades
Thank you for your attention!

C. Tyler Dick, P.E.
Senior Research Engineer
Rail Transportation and Engineering Center (RailTEC)
University of Illinois at Urbana-Champaign
E-mail: ctdick2@illinois.edu

Partial support for the authors from:

ASSOCIATION OF AMERICAN RAILROADS

National University Rail Center (NURail)
a USDOT-OST Tier 1 University Transportation Center