COOPERATIVE INTELLIGENT TRANSPORT SYSTEMS

LEVEL CROSSING SAFETY

Professor Jugdutt (Jack) Singh
Director – Centre for Technology Infusion
Advanced INFORMATION & COMMUNICATIONS TECHNOLOGIES used to enhance safety, improve mobility, support commerce, and help sustain the environment

.... Addressing multi-modal

- Transport Safety
- Transport Productivity
- Travel Reliability
- Health & Safety
- Environmental Performance
- Informed Travel Choices
- Social Equity
- Network Operation & Resilience
- etc.

What is Cooperative Intelligent Transport Systems?
COOPERATIVE MOBILITY CONCEPT

- Anticipating by communication
 - Efficient use of roads during heavy traffic
 - Information on road conditions and traffic flow
 - Information on behaviour of other road users

- Supported by cooperative technology
 - Vehicle-to-Vehicle and Vehicle-to-Infrastructure communication
 - Real-time personal warning and advising
CO-OPERATIVE INTELLIGENT TRANSPORT SYSTEMS TO IMPROVE SAFETY AT LEVEL CROSSINGS
LEVEL CROSSING COLLISIONS IN AUSTRALIA (2000 – 2009)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Public road</th>
<th>Private road</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Active control</td>
<td>Passive control</td>
<td>Active control</td>
</tr>
<tr>
<td>Number of collisions</td>
<td>356</td>
<td>248</td>
<td>27</td>
</tr>
<tr>
<td>Number of people fatally injured</td>
<td>58</td>
<td>35</td>
<td>0</td>
</tr>
</tbody>
</table>

- Over 70 fatalities (1997 – 2002)

Source: ITSR
Causes include

- lack of awareness of an on-coming train
- unintended road user error
- driver behaviour and other human factors

Aust. Government Recommendations

- **State Government (Dec 2008)**
 - Adopt new developing technologies such as ITS
 - Govt. to coordinate support to develop, trial and adopt ITS
 - Trial, promote/encourage use of ITS at rail-road interface

- **Federal Government (June 2009)**
 - Gov. to support ITS research to speed the implementation
 - Research into feasibility of cut-in warning systems
Vehicle safety research is shifting its focus towards crash avoidance and collision mitigation.

Traditional sensors, like radars, have the following limitations:

- Limited range (sense immediate vehicles)
- Limited Field of View (FOV)
- Expensive

Cooperative Intelligent Transport Systems using wireless comm. (DSRC) for vehicle safety, mobility and commercial apps.

“360 Degrees Driver Situation Awareness” using wireless comm.
COOPERATIVE INTELLIGENT TRANSPORT SYSTEMS

- Vehicle-to-Vehicle Communications
- Vehicle-to-Infrastructure Communications
- Human-Machine Interface (human factors)

- Safety
 - Intersection collision avoidance
 - Cooperative collision warning
 - Traffic signal interface

- Mobility
 - Traffic congestion management
 - Traffic signal control and management
 - Incident management

- Consumer & Commercial
 - Electronic payment
 - Fleet management
SOLUTION

- Safety
 - Intersection collision avoidance
 - Cooperative collision warning
 - Traffic signal interface

- Mobility
 - Traffic Congestion Management
 - Incident Management
 - in-vehicle signage/messaging
 - Traffic signal control & management

- Consumer & Commercial
 - Electronic payment
 - Fleet management
 - Information transfer

Technology: DSRC
- Vehicle-to-Vehicle (V2V)
- Vehicle-to-Infrastructure (V2I)
- Multi-hop

Human Factors/Behavior

![Diagram of a cityscape with V2V and V2I communications](image-url)
CONCEPT OF THE SAFETY SOLUTION

Intelligent Transport Systems using 5.9 GHz DSRC Technology

Scenario: Vehicle approaching a level crossing
ESSE Framework (Linux 2.6.18 - Centos, x86_64 Architecture)

HPC Messaging Library

Open MPI (with InfiniBand Support and Gigabit Ethernet)

Parallel Computing Cluster

Simulator Elements
- XML Configuration Parser
- Routing/Congestion Algorithms
- Global Positioning System (GPS)
- Mechanical Solver (Vehicles)
- Behavioral Models (Drivers)
- Following Model (Vehicles)
- DSRC PHY/MAC
- DSRC Context Perception
- HMI Messaging

Simulation/Scene Builder Setup
- “Drag Drop” Entity Selection (Vehicle/Driver/Map)
- Configurable Parameters
- Visualisation/Animation
- Design of Experiments (DoE)

Extensible Configuration Files
- Scene (Map)
- Vehicle Characteristics
- Driver Characteristics
- HMI Messages
- DSRC Radio (PHY)
- DSRC MAC
- GPS etc.

Simulation/Simulator Configuration

Simulator Software

Hardware Platform

Exchange Information

Traced Statistics

Configuration Data
Simulation Platform

Simulation/Scene Setup Toolbox

Simulation Object Panel

Simulation Object Configuration

Train Model

DSRC Equipped Vehicle

Level Crossing Signal Model

DSRC Range Circle

Destination/Path Markers

Vehicle Configuration

Vehicle Properties:
- start_time: 4
- is_path_finder: true
- is_dsric_on: true
- num_dsric_units: 1
- initial_speed: 2
- model: PM
- mass_module: 6000.00
- mass_load: 2000.00
- service_braking: 1.2
- max_power: 500000
- rpm: 6000
- wheel_radius: 0.34
- gear_ratios: 3.6, 4.0, 2.4, 1.8, 1.2, 0.5
- gear_speeds: 20, 30, 40, 70, 90, 120
- differential_gee: 4
- engine_brake: 0.85

Driver Configuration
DSRC Functionality
- CCH Operation (max higher power for RSU and Train)
- T2V and T2I-I2V for train messaging
- V2V BSM send on sync (network performance)

Mapping & Context Perception
- Auto-positioning and map interpolation
- Context perception for Head/Tail detection and trajectory estimation (V2V/V2I)
- Intelligent remote dead-reckoning
- Crossing safety detection

Warning algorithm
- Train critical position detection
- Intersection collision time calculation
- Extended NHTSA Collision Avoidance algorithm

System Software
- Logging events and packet information
- System error auto-detection and recovery functions
Staged intelligent warnings (direct path)
- First warning: presence of train on current path
- Higher levels: triggered through algorithm calculations (NHTSA + presentation time, reaction time, safety margins)
- Combination of audio and video to produce perceptual cascading effect
- Volume of sound and intrusiveness of visual alert increase with level of urgency

Staged intelligent warnings (in-direct path)
- Higher level audio-visual alerts are only triggered as driver enters a direct path to the level crossing
- All alerts extinguish as soon as vehicle has cleared the crossing or is heading away from crossing
FIELD TRIAL SITE

HIGHETT (METROPOLITAN MELBOURNE)

- LOS NLOS radio propagation in city area
- Heavy channel congestion and interference
- Radio fading and path loss in high-building area
- Level-crossing warning threshold in city area
- Complex indirect path operations
- Heavy-traffic and complex road driving habits
- Driving habits at highly controlled crossing
DIRECT APPROACH

Perpendicular Approach
Factors Affecting Connectivity at Trial Sites

<table>
<thead>
<tr>
<th>Site</th>
<th>Street</th>
<th>> 90%</th>
<th>50%</th>
<th>< 10%</th>
<th>Building Density</th>
<th>Terrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dingee</td>
<td>Dingee Rd</td>
<td>0-200m</td>
<td>700m</td>
<td>> 1050m</td>
<td>Low</td>
<td>Flat</td>
</tr>
<tr>
<td></td>
<td>Queen St</td>
<td>0-250m</td>
<td>1050m</td>
<td>> 1700m</td>
<td>Low</td>
<td>Flat</td>
</tr>
<tr>
<td></td>
<td>King St</td>
<td>0-200m</td>
<td>600m</td>
<td>> 700m</td>
<td>Low</td>
<td>Flat</td>
</tr>
<tr>
<td>Highett</td>
<td>Highett Rd (West)</td>
<td>0-210m</td>
<td>380m</td>
<td>> 410m</td>
<td>Medium</td>
<td>Lower than RSU</td>
</tr>
<tr>
<td></td>
<td>Highett Rd (East)</td>
<td>0-100m</td>
<td>150m</td>
<td>> 220m</td>
<td>High</td>
<td>Flat</td>
</tr>
<tr>
<td></td>
<td>Railway Parade</td>
<td>0-110m</td>
<td>130m</td>
<td>> 170m</td>
<td>Medium</td>
<td>Flat</td>
</tr>
<tr>
<td></td>
<td>Graham Rd</td>
<td>0-220m</td>
<td>320m</td>
<td>NA</td>
<td>Medium</td>
<td>Flat</td>
</tr>
<tr>
<td>Cheltenham</td>
<td>Park Rd (West)</td>
<td>0-130m</td>
<td>180m</td>
<td>> 240m</td>
<td>Medium</td>
<td>Much Higher than RSU</td>
</tr>
<tr>
<td></td>
<td>Park Rd (East)</td>
<td>0-360m</td>
<td>NA</td>
<td>NA</td>
<td>High</td>
<td>Flat</td>
</tr>
</tbody>
</table>

- Connectivity at **urban sites** (Highett and Cheltenham) is significantly different from that of the **rural site** (Dingee).
- **LOS** quality is clearly the **primary factor** that affects the connectivity.
- **Building density** and **terrain** also notably affect the connectivity.
Participant self-reports of Startled

- **Driver Responses**
 - Rural trial
 - Urban trial 1
 - Urban trial 2
 - Generic trial

Participant self-reports of Distraction

- **Driver Responses**
 - Rural trial
 - Urban trial 1
 - Urban trial 2
 - Generic trial
LARGE SCALE DEPLOYMENT TRIAL

- Two trials sites in remote Townsville, Queensland: Manton Quarry Road, Calcium and GroMac Quarry Access Road, Broughton
- Trial period: 6 months 2013/2014
- Freight trains and heavy vehicles
Queensland Large Scale Deployment Trial

“Smart City Test Bed” Shanghai, China
Ongoing interest in improving safety record and reduction of tram-to-tram and tram-to-road vehicles/pedestrian collisions

Commercial & safety benefits

- Reduce accident rates and tram repair costs of franchise:
 - Reduced tram to tram accidents
 - Reduced tram to road vehicle accidents as the road fleet commences utilising the DSRC capability
 - Reduced tram to pedestrian accidents

Operational applications

- Speed restrictions, forced stops, other
TRAM SAFETY POSSIBLE TRIAL SCENARIO
BOURKE - SPENCER STREET

- Possible Trial sites
 - Bourke-Spencer
 - Swanston-Flinders

- Collision Avoidance
 - Tram-to-Tram
 - Tram-to-Vehicle
 - Tram-to-Pedestrian
 - Speed restrictions
 - etc.

- Modelling
 - Environment
 - Trams
 - Communication Channel
 - T2T, T2V, T2I, etc
 - HMI

- HMI – Safety messaging

Warning: Safe headway distance is 15 meters.
Thank you

Centre for Technology Infusion

“Bringing ideas to Life”

Professor Jugdutt (Jack) Singh
Director – Centre for Technology Infusion
P: +61 3 9479 3813/3382 M: +61 411 476 976
E: Jack.Singh@latrobe.edu.au