SAFETY ANALYSIS ON RAIL HIGHWAY AT-GRADE CROSSING IN ALABAMA

Jing Li, Post-doc Researcher

Gaurav Mehta, PhD Candidate

Steven Jones, Associate Professor

Department of Civil, Construction and Environmental Engineering
The University of Alabama, Tuscaloosa, Alabama

2014 Global Level Crossing Symposium
August 6th 2014, Urbana, IL, USA
Safety Research at The University of Alabama

University Transportation Center for Alabama (UTCA)

Center for Advanced Public Safety (CAPS)

Safety performance function (SPF) development
- In line with the Highway Safety Manual (HSM)
- SPFs for two-lane rural roads, four-lane divided highways, urban/suburban arterials, highway bridges, and rail highway at-grade crossings, based on Alabama data.

Highway safety plan development
- Comprehensive Highway Safety Plan
- Strategic Highway Safety Plan
Outline

- Background of Study
- Objective of Study
- Data Description
- Modeling Methodology
- Modeling Results
- Conclusion
- Future Research
Background of Study

What can make RHGCs safer?

- Track and signal inspection and maintenance
- Warning device upgrade
- Educate the public about proper behavior at RHGCs
Background of Study

Available Funds

Effectively utilized

Ranked list of RHGC for improvements:
1. RHGC #2
2. RHGC #1
3. RHGC #3
...

Through appropriate ranking program

RHGC #1
RHGC #2
RHGC #3
RHGC #4

...
The crash prediction model from the RHGC safety assessment approach recommended by the US Department of Transportation:

- Base formula* (1986)
- Weighted formula for observed crashes* (1986)
- Final adjustment for current collision trends** (2007)

Related studies

- RHGC crash analysis (influencing factors, prediction model)
- Effective analysis of warning devices at RHGCs (e.g., stop sign)

Objective of Study

- Develop safety performance functions (SPFs) for crashes occurring at RHGCs in line with the Highway Safety Manual (HSM).
- Tools and techniques to integrate safety into transportation planning
- Predictive method gives expected average crash frequency

- Understand how RHGC characteristics affect crash occurrences.
Data Description

Data Sources

Federal Railroad Administration (FRA) database
- Highway-rail crossing inventory
- Highway-rail crossing history file
- Highway-rail crossing accident database

Alabama Department of Transportation (ALDOT) database
- Rail-highway at-grade crossing inventory
Crash Facts

- 1,332 crashes occurred from 1998-2012.
- RHGC crashes generally increased from 2009-2012
Data Description

15-year Crash observations at 2,720 RHGCs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>306359C</td>
<td>Attributes that represents the latest statuses of crossings</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>726916V</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Data processing to make sure:

- Each sample is from a five-year interval without changes of the crossing.
- Each sample has the corresponding status of the RHGC.

FRA highway-rail crossing history file

Final sample set for modeling (2,198 samples)
Modeling Methodology

- **Data Analysis**
 - Crashes are rare and random events
 - Discrete count models
 - Observed crash counts as over-dispersed data
 - Negative Binomial model (NB2 formulation)

- **Best Model Identification (goodness of fit)**
 - Log-likelihood value
 - Akaike Information Criterion (AIC)

- **Model Validation**
 - Validation date set
 - Model validity measures
Modeling Methodology

Crash data set

Training set

Validation set

Candidate Negative Binomial regression models (NB2 formulation)

*NLOGIT*4.0

Log-likelihood value & AIC

Potential best model(s)

Best model

Validity measures
Modeling Development

- Variable description
 - Crash count over five consecutive years for a crossing serves as the dependent variables.
 - 152 variables from the crossing inventory.
 - Many variables are redundant giving same information.
 - Many variables not included in the analysis because of missing values and description.
 - 60 variables were shortlisted for detail investigation.
 - After further investigation 27 variables were used in the model.
Modeling Results

SPF for Alabama RHGC crashes

<table>
<thead>
<tr>
<th>Variables</th>
<th>Best model</th>
<th>Comparable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-6.0066</td>
<td>-5.2083</td>
</tr>
<tr>
<td>LnAADT</td>
<td>0.3388</td>
<td>0.1978</td>
</tr>
<tr>
<td>Percentage truck</td>
<td>0.0228</td>
<td>0.0246</td>
</tr>
<tr>
<td>Number of bells</td>
<td>-0.5593</td>
<td></td>
</tr>
<tr>
<td>Variable indicating at least 1 train per day</td>
<td>-1.269</td>
<td></td>
</tr>
<tr>
<td>Pavement markings</td>
<td>0.2967</td>
<td>0.2378</td>
</tr>
<tr>
<td>Max train speed</td>
<td>0.0219</td>
<td></td>
</tr>
<tr>
<td>Minimum train speed</td>
<td>0.013</td>
<td>0.0271</td>
</tr>
<tr>
<td>Dispersion Parameter</td>
<td>1.7198</td>
<td>2.0929</td>
</tr>
<tr>
<td>Log-Likelihood</td>
<td>-366.182</td>
<td>-371.133</td>
</tr>
<tr>
<td>AIC</td>
<td>0.759</td>
<td>0.765</td>
</tr>
</tbody>
</table>
Conclusion

- Developed the safety performance function (SPF) for rail-highway at-grade crossings in Alabama.
 - Two models currently are viable.
 - The U.S. DOT model contains variables that are irrelevant to the prediction of RHGC crashes, at least in Alabama.

- The models are based on Alabama data
 - Alabama-specific RHGC SPFs may not apply in other states.
 - Test using calibration factor or develop new SPFs.
Future Research

- Use Conway–Maxwell–Poisson (CMP) distribution to model crash counts at RHGCs.
 - Advantages of CMP –
 - Very flexible and spans over three distribution (Geometric, Poisson and Bernoulli)
 - Performs well for both over-dispersed and under-dispersed data set
 - Motivation of using CMP –
 - Model RHGC crash counts at different levels of severity
- Work with ALDOT to develop a ranking program to prioritize RHGCs for improvements.
Thanks!

Questions / Comments?
USDOT Accident Prediction Model

- $EI =$ factor for exposure index based on product of highway and train traffic
- $MT =$ factor for number of main tracks
- $DT =$ factor for number of through trains per day during daylight
- $HP =$ factor for highway paved (yes or no)
- $MS =$ factor for maximum timetable speed
- $HT =$ factor for highway type
- $HL =$ factor for number of highway lanes

HSM Methodology Prediction Model

- Train Speed (Max and Min)
- AADT
- Truck Percentage
- Warning device Present
- Pavement Markings
- Train Activity (< 1 per day)