

TRANSPORTATION DEVELOPMENT CENTRE (TDC)

Mitigating Risky Behavior of Delayed Road Users at Occupied Highway-Railway Crossings: Review of Research and Issues

Daniel Blais, Project Officer, Accessibility and Human Factors

Outline

- Background
- Objective
- Methodology
- Results
- Conclusions

Background

- Blocked highway-railway crossings are an increasing safety concern (more rail traffic, less track, more urbanization)
- Can cause delays and may cause road users to engage in high-risk behavior
- Need to better understand ways to reduce high-risk behavior of road users and increase railway safety

Project Team

- Transport Canada Rail Safety Directorate
- Railway Association of Canada
- Operation Lifesaver
- Federation of Canadian Municipalities
- Transportation Safety Board
- Naish Transportation Consulting

Objective

- Investigate blocked crossings:
 - 1. railway operational reasons for blocking crossings
 - the relationship between increased urban development near railway facilities and blocked crossings
 - 3. road user behavior at blocked crossings and countermeasures to avoid risk taking behavior

Occupied or blocked crossings

- Crossings where trains are standing or moving slowly
- Crossings where trains are switching over the crossing
- A signalized crossings where the warning system is operating (sometimes excessively)

Scope

- This research was primarily a review of:
 - National and international policy, rules and regulations
 - Existing research on 3 areas stated in objective
 - Issues from industry and municipalities (consultations)
- Results will guide future research to reduce risky behavior of road users

Types and causes of blockages

- STATIONARY TRAINS AND SLOW MOVING LONG TRAINS
- RAILWAY SWITCHING OPERATIONS
- EXCESSIVE CROSSING WARNING SIGNAL OPERATION
- FREQUENT CROSSING SIGNAL OPERATION

Road user behavior

- CHARACTERISTICS OF CROSSING USERS
- AGE AND GENDER DIFFERENCES
- PEDESTRIAN BEHAVIOUR
- CRITICAL WAIT TIMES
- RESEARCH REGARDING ANGER, AGGRESSION,
 MOOD AND RISK TAKING
- DELAY PERCEPTION

Road user behavior

Proximity and Land Use

 Increasing urbanization and increasing commodity rail traffic inevitably lead to congestion in areas where the two meet

Comparable international issues

Europe

- Blocked crossings are typically related to significant delays caused by second train issues
- Remedied by having the train cross at the same time

Australia

 Crossing signals interconnected with nearby highway signals and scheduling to reduce blockages and back ups

Compliance & enforcement

- Photo enforcement at crossings can increase compliance (50% to 69% increase)
- The longer the time between lowering of the gates and the arrival of the train, the higher the rate of violations
- Warning system reliability exerts a predictable effect on motorists

Regulations relating to crossing violations

US

 No federal regulation on crossing blockage; each state has its own regulations

Canada

- 5 minute rule (stopped vs slow moving)
- New regulations proposed

TSB accident records

- 29 Records found using key words: climbing through, climbing over, climbing under, crossing, and trespasser
- Accident are often severe

Some possible solutions to mitigate or remove delays

- Technology based solutions
 - Pre-emption of road traffic signals
 - Interconnection of rail and traffic signal systems (upgrading)
 - Monitoring and communications to ID and reroute
 - ITS and real time information

Image of a variable message sign, could be applied to notify road users of time of occupied crossing to reduce risky behavior

Some possible solutions to mitigate or remove delays

- Operational solutions
 - Relocation of crew change points
 - Scheduling
 - Updating infrastructure to meet capacity
 - Using new systems to optimize operations

Benefit – cost analysis of problem mitigation

- The daily weekday delay cost is just over \$28,000
- Value of lost time to road users would be around \$6.22 million/year
- Reducing road user delay by 10 15% cost savings could be between \$622,000 and \$933,000/year

Conclusion / next steps

- Victims of success
- The delay effect of blocked crossings on many road users is immediate and negative
- Many opportunities to address the problem
- This research will guide future R&D efforts to address risk taking behaviour at occupied crossings

Questions?

Daniel Blais, MUP,

A/ Project Officer, Accessibility and Human Factors /

Transportation Development Centre

Tel: (613) 993-6261

e-mail: daniel.blais@tc.gc.ca

Transport Canada
Centre of Excellence in Economics, Statistics, Analysis
and Research (CEESAR)
Place de Ville, 330 Sparks Street, 25th floor (ACAF)
Ottawa, Ontario K1A 0N5

