Highway-Rail Grade Crossing Safety Challenges for Shared Operations

Samantha G. Chadwick C. Tyler Dick, M. Rapik Saat, Christopher P.L. Barkan

Rail Transportation and Engineering Center University of Illinois at Urbana-Champaign, USA

Presented at Global Level Crossing Safety and Trespass Prevention Symposium 6 August 2014

Outline

- Research Goals
- Level Crossing Derailment Risk Model Development
- Prospective Model and Identification of Proxy Variables
- Derailment Likelihood Calculator
- Incorporating Consequence Data
- Future Work

Level Crossings

- Trains pose a risk to motor vehicles at level crossings
 - Substantial research on reducing risk to highway users
 - Improved warning systems, driver education, and other actions have substantially reduced incidents over the past 30 years

But there is another side to the story...

- What risks do level crossing collisions pose to *trains*?
- The answer to this question is not well understood

Research Goals

- Understanding derailment risk to trains due to level crossings has several important implications
 - Passenger train safety
 - Freight train safety
 - Dangerous goods
 - Time and financial cost
- A model to predict derailment probability due to level crossing incidents will help us understand this risk

Risk Model Development

- For passenger trains, consequence metric is number of casualties
- For freight train propagnity or an atrial free train of the sector of
 - Likelihood of hazmat release has been researched extensively

Slide 7

Regression Model Variables

Variable	Definition	Variable Type	Range of Values
VEHSPD	Highway Vehicle Speed (mph)	Continuous	Range*: 0-105 mph Average *: 10.50 mph Standard Deviation*: 13.57
TRNSPD	Train Speed (mph)	Continuous	Range*: 0-80 mph Average*: 31.45 mph Standard Deviation*: 15.58
LGVEH	Large Highway Vehicle Involved?	Binary (Yes or No)	N if no; Y if yes
TRNSTK	Incident Type Train Struck Vehicle Vehicle Struck Train	Binary	VST if highway user struck train; TSV if train struck highway user

Freight Train Model

• For incidents where the train strikes the vehicle

$$p_{TSV} = \frac{1}{e^{-x_{TSV+1}}}$$
$$x_{TSV} = -7.1789 + \begin{cases} 0, & LGVEH = Y \\ -1.8687, & LGVEH = N \end{cases} + 0.0166 TRNSPD$$

• For incidents where the vehicle strikes the train

$$p_{VST} = \frac{1}{e^{-x_{VST}} + 1}$$

$$x_{VST} = -6.4039 + \begin{cases} 0, & LGVEH = Y \\ -1.5044, & LGVEH = N \end{cases} + 0.00101 \, VEHSPD^2$$

- Where TRNSPD = train speed, VEHSPD = highway vehicle speed and LGVEH indicates the highway vehicle was a truck
- We can combine these using prior probabilities to give an overall level crossing derailment model

$$p_{derailment} = 0.80 p_{TSV} + 0.20 p_{VST}$$

Summary of model development

- Train strikes vehicle, *the probability of derailment given an incident*, *p*(*D*|*I*) increases:
 - As train speed increases
 - If a large highway vehicle such as a semi-truck is involved
- Vehicle strikes train, p(D|I) increases:
 - As vehicle speed increases
 - If a large highway vehicle such as a semi-truck is involved
- Model predicts likelihood of a particular collision resulting in a derailment
- Goal is to develop predictive model of level crossing characteristics that affect risk of derailment

- Identify proxy variables for level crossing risk model parameters

Proxy Variables for Predictive Model

Incident-Specific Variable	Crossing-Specific Variable
Vehicle Speed	Posted Speed Limit
Train Speed	Timetable Speed
Large Vehicle Involvement	Percent Truck Traffic Annual Average Daily Traffic (AADT)

- Different approach for incident type
 - Many human and design factors influence incident type
 - Assumed a fixed ratio based on historical data
 - 79.95% TSV
 - 20.15% VST

Deviation from Posted Highway Speed (%)

ILLINOIS - RAILTEC

Deviation from Time Table Speed (%)

Percent Truck Traffic

Derailment Likelihood Calculator

P(D I) Calculator				
Enter Crossing Factors				
Posted Highway Speed I	35	mph		
Timetable Speed*	45	mph		
* values must be greater than 0				
Level Crossing Type	<mark>Other A</mark>	Active		
Percent Truck Traffic		8	(0-100)	
Results				
Probability of Derailment		0.000380		

- Using crossing characteristics, we can calculate an average conditional probability of derailment based on every possible incident scenario
- A "calculator" was developed using Microsoft Excel
- Combined with an incident likelihood model such as the U.S. DOT Accident Prediction Model, this can be used to rank level crossings for improvement

Incorporating Consequence Data

- Prioritization of crossing upgrades should also account for relative likelihood and severity of different level crossing incidents:
 - Non-derailment incident consequence:
 - highway user casualties
 - delay and disruption of service
 - Derailment incident consequence:
 - crew casualties, (and/or passenger casualties)
 - extensive infrastructure and rolling stock damage
 - extended delay and disruption of service
 - dangerous goods release

Derailment Likelihood Example

Crossing	Crossing Classification	Value			Ranking		
		f(I)	p(D I)	p(D)	f(I)	p(D I)	p(D)
G	Rural Collector	0.0143	0.00268	3.8E-05	1	1	1
А	Rural Collector	0.0105	0.00041	4.3E-06	2	4	3
E	Rural Collector	0.0099	0.00036	3.6E-06	3	5	4
В	Rural Local Road	0.0092	0.00027	2.5E-06	4	6	6
С	Rural Local Road	0.0061	0.00139	8.5E-06	5	2	2
F	Rural Local Road	0.0057	0.00057	3.3E-06	6	3	5
D	Rural Local Road	0.0022	0.00021	4.6E-07	7	7	7

 $p(D) = f(I) \times p(D|I)$

Incorporating Consequence Data

Characteristic	Rural Crossing	Urban Crossing
Warning Device Type	Active	Active
AADT	1,800	29,900
Percent Truck Traffic	10%	6%
Population Density	20 ppl/mi ²	25,000 ppl/mi ²
Projected Casualties in HM Release	25 casualties	31,250 casualties
f(l)	0.010317	0.036942
p(D I) (Derailment Calculator)	0.001668	0.000310

- Rural Crossing: 450 times more likely to experience a highway user casualty than a casualty caused by HM release
- Urban Crossing: Two (2) times more likely to experience a highway user casualty than a casualty caused by HM release

Future Work

- Incorporate consequences of level crossing incidents and derailments into level crossing prioritization model
- Develop analogous model for passenger train risk
- Incorporate these models into the larger risk management framework
 - Implications for shared corridor operations?
 - Routing decisions for dangerous goods trains?

Summary

- Developed a statistical model of freight train derailments due to level crossing incidents
- Identified critical predictors of derailment likelihood
- Developed a prospective model to assess risk of crossings with various key conditions
- Preliminary consideration of how to incorporate consequences into the risk model

Acknowledgements

- RailTEC: Sam Sogin, Xiang Liu, Laura Ghosh, Jesus Aguilar Serrano
- Illinois Commerce Commission: Steve Laffey

Slide 20

Thank you! Questions?

Samantha G. Chadwick, EIT

Graduate Research Assistant, RailTEC University of Illinois at Urbana-Champaign schadwi2@illinois.edu

Appendix

Incidents Occurring at Grade Crossings on Mainline Track - 1991 to 2010

Speed at Collision of Highway Users Involved in Grade Crossing Incidents – Train Striking Vehicle. 1991-2010

on of Highway Hooro Involved in Crode

Speed at Collision of Highway Users Involved in Grade Crossing Incidents – Vehicle Striking Train, 1991-2010

Speed at Collision of Trains Involved in Grade Crossing Incidents – Train Striking Vehicle, 1991-2010

Speed of Train At Collision (mph)

Derailments are more likely to occur at <u>lower</u> train speeds when the train strikes the vehicle.

Speed at Collision of Trains Involved in Grade Crossing Incidents – Vehicle Striking Train, 1991-2010

Derailments are more likely to occur at <u>lower</u> train speeds when the vehicle strikes the train.