

SAFETY ANALYSIS ON RAIL HIGHWAY AT-GRADE CROSSING IN ALABAMA

Jing Li, Post-doc Researcher

Gaurav Mehta, PhD Candidate

Steven Jones, Associate Professor

Department of Civil, Construction and Environmental Engineering
The University of Alabama, Tuscaloosa, Alabama

2014 Global Level Crossing Symposium August 6th 2014, Urbana, IL, USA

Safety Research at The University of Alabama

University Transportation Center for Alabama (UTCA)

Center for Advanced Public Safety (CAPS)

$S_{afety\ performance\ function\ (SPF)\ development}$

- ✓ In line with the Highway Safety Manual (HSM)
- ✓ SPFs for two-lane rural roads, four-lane divided highways, urban/suburban arterials, highway bridges, and rail highway at-grade crossings, based on Alabama data.

Highway safety plan development

- ✓ Comprehensive Highway Safety Plan
- ✓ Strategic Highway Safety Plan

Outline

- **□** Background of Study
- **☐** Objective of Study
- Data Description
- Modeling Methodology
- **☐** Modeling Results
- Conclusion
- Future Research

Background of Study

What can make RHGCs safer?

- ✓ Track and signal inspection and maintenance
- ✓ Warning device upgrade
- ✓ Educate the public about proper behavior at RHGCs

Background of Study

Background of Study

- ❖ The crash prediction model from the RHGC safety assessment approach recommended by the US Department of Transportation:
 - Base formula* (1986)
 - Weighted formula for observed crashes* (1986)
 - Final adjustment for current collision trends** (2007)
- Related studies
 - RHGC crash analysis (influencing factors, prediction model)
 - Effective analysis of warning devices at RHGCs (e.g., stop sign)

- * Railroad-Highway Grade Crossing Handbook (1986)
- ** Accident Prediction and Resource Allocation Procedure Normalizing Constants (2007

Objective of Study

- Objective of Study
 - Develop safety performance functions (SPFs) for crashes occurring at RHGCs in line with the Highway Safety Manual (HSM).

- Tools and techniques to integrate safety in to transportation planning
- Predictive method gives expected average crash frequency

Understand how RHGC characteristics affect crash occurrences.

Data Description

Data Sources

- *Highway-rail crossing inventory*
- Highway-rail crossing history file
- Highway-rail crossing accident database

Alabama Department of Transportation (ALDOT) database

• *Rail-highway at-grade crossing inventory*

Data Description

Data Description

15-year Crash observations at 2,720 RHGCs

Crossing ID	Crossing characteristics	Crash count over 1998-2002	Crash count over 2003-2007	Crash count over 2008-2012
306359C	Attributes that	2	1	O
726916V	represents the latest statuses of crossings	0	0	0
•••				

Data processing to make sure:

- Each sample is from a five-year interval without changes of the crossing.
- Each sample has the corresponding status of the RHGC.

FRA highway-rail crossing history file

Final sample set for modeling (2,198 samples)

Samples

Modeling Methodology

Data Analysis

- Crashes are rare and random events
- Discrete count models
- Observed crash counts as over-dispersed data
- Negative Binomial model (NB2 formulation)
- Best Model Identification (goodness of fit)
 - Log-likelihood value
 - Akaike Information Criterion (AIC)
- **❖** Model Validation
 - ➤ Validation date set
 - Model validity measures

Modeling Methodology

Modeling Development

Variable description

- Crash count over <u>five consecutive years</u> for a crossing serves as the dependent variables.
- <u>152</u> variables from the crossing inventory.
- Many variables are redundant giving same information.
- Many variables not included in the analysis because of missing values and description.
- <u>60</u> variables were shortlisted for detail investigation.
- After further investigation <u>27</u> variables were used in the model.

Modeling Results

SPF for Alabama RHGC crashes

Variables	Best model	Comparable model
Intercept	-6.0066	-5.2083
LnAADT	0.3388	0.1978
Percentage truck	0.0228	0.0246
Number of bells	-0.5593	
Variable indicating at least 1 train per day	-1.269	
Pavement markings	0.2967	0.2378
Max train speed	0.0219	
Minimum train speed	0.013	0.0271
Dispersion Parameter	1.7198	2.0929
Log-Likelihood	-366.182	-371.133
AIC	0.759	-371.133 0.765

Conclusion

- ❖ Developed the safety performance function (SPF) for railhighway at-grade crossings in Alabama.
 - Two models currently are viable.
 - ➤ The U.S. DOT model contains variables that are irrelevant to the prediction of RHGC crashes, at least in Alabama.
- The models are based on Alabama data
 - ➤ Alabama-specific RHGC SPFs may not apply in other states.
 - ➤ Test using calibration factor or develop new SPFs.

Future Research

- ❖ Use Conway–Maxwell–Poisson (CMP) distribution to model crash counts at RHGCs.
 - Advantages of CMP
 - ✓ Very flexible and spans over three distribution (Geometric, Poisson and Bernoulli)
 - ✓ Performs well for both over-dispersed and under-dispersed data set
 - Motivation of using CMP
 - ✓ Model RHGC crash counts at different levels of severity
- ❖ Work with ALDOT to develop a ranking program to prioritize RHGCs for improvements.

Thanks!

Questions / Comments?

Notes

USDOT Accident Prediction Model

- EI = factor for exposure index based on product of highway and train traffic
- MT = factor for number of main tracks
- DT = factor for number of through trains per day during daylight
- HP = factor for highway paved (yes or no)
- *MS* = factor for maximum timetable speed
- HT = factor for highway type
- *HL* = factor for number of highway lanes

HSM Methodology Prediction Model

- Train Speed (Max and Min)
- AADT
- Truck Percentage
- Warning device Present
- Pavement Markings
- Train Activity (< 1 per day)

