SAFETY ANALYSIS ON RAIL HIGHWAY AT-GRADE CROSSING IN ALABAMA Jing Li, Post-doc Researcher Gaurav Mehta, PhD Candidate Steven Jones, Associate Professor Department of Civil, Construction and Environmental Engineering The University of Alabama, Tuscaloosa, Alabama 2014 Global Level Crossing Symposium August 6th 2014, Urbana, IL, USA ## Safety Research at The University of Alabama University Transportation Center for Alabama (UTCA) Center for Advanced Public Safety (CAPS) ## $S_{afety\ performance\ function\ (SPF)\ development}$ - ✓ In line with the Highway Safety Manual (HSM) - ✓ SPFs for two-lane rural roads, four-lane divided highways, urban/suburban arterials, highway bridges, and rail highway at-grade crossings, based on Alabama data. ## Highway safety plan development - ✓ Comprehensive Highway Safety Plan - ✓ Strategic Highway Safety Plan ## **Outline** - **□** Background of Study - **☐** Objective of Study - Data Description - Modeling Methodology - **☐** Modeling Results - Conclusion - Future Research ## **Background of Study** ## What can make RHGCs safer? - ✓ Track and signal inspection and maintenance - ✓ Warning device upgrade - ✓ Educate the public about proper behavior at RHGCs # **Background of Study** ## **Background of Study** - ❖ The crash prediction model from the RHGC safety assessment approach recommended by the US Department of Transportation: - Base formula* (1986) - Weighted formula for observed crashes* (1986) - Final adjustment for current collision trends** (2007) - Related studies - RHGC crash analysis (influencing factors, prediction model) - Effective analysis of warning devices at RHGCs (e.g., stop sign) - * Railroad-Highway Grade Crossing Handbook (1986) - ** Accident Prediction and Resource Allocation Procedure Normalizing Constants (2007 ## **Objective of Study** - Objective of Study - Develop safety performance functions (SPFs) for crashes occurring at RHGCs in line with the Highway Safety Manual (HSM). - Tools and techniques to integrate safety in to transportation planning - Predictive method gives expected average crash frequency Understand how RHGC characteristics affect crash occurrences. ## **Data Description** Data Sources - *Highway-rail crossing inventory* - Highway-rail crossing history file - Highway-rail crossing accident database **Alabama Department of** Transportation (ALDOT) database • *Rail-highway at-grade crossing inventory* ## **Data Description** ## **Data Description** 15-year Crash observations at 2,720 RHGCs | Crossing
ID | Crossing characteristics | Crash count
over 1998-2002 | Crash count
over 2003-2007 | Crash count
over 2008-2012 | |----------------|--|-------------------------------|-------------------------------|-------------------------------| | 306359C | Attributes that | 2 | 1 | O | | 726916V | represents the latest
statuses of crossings | 0 | 0 | 0 | | ••• | | | | | Data processing to make sure: - Each sample is from a five-year interval without changes of the crossing. - Each sample has the corresponding status of the RHGC. FRA highway-rail crossing history file Final sample set for modeling (2,198 samples) Samples ## **Modeling Methodology** ## Data Analysis - Crashes are rare and random events - Discrete count models - Observed crash counts as over-dispersed data - Negative Binomial model (NB2 formulation) - Best Model Identification (goodness of fit) - Log-likelihood value - Akaike Information Criterion (AIC) - **❖** Model Validation - ➤ Validation date set - Model validity measures ## **Modeling Methodology** ## **Modeling Development** ## Variable description - Crash count over <u>five consecutive years</u> for a crossing serves as the dependent variables. - <u>152</u> variables from the crossing inventory. - Many variables are redundant giving same information. - Many variables not included in the analysis because of missing values and description. - <u>60</u> variables were shortlisted for detail investigation. - After further investigation <u>27</u> variables were used in the model. # **Modeling Results** #### SPF for Alabama RHGC crashes | Variables | Best model | Comparable model | |---|------------|-------------------| | Intercept | -6.0066 | -5.2083 | | LnAADT | 0.3388 | 0.1978 | | Percentage truck | 0.0228 | 0.0246 | | Number of bells | -0.5593 | | | Variable indicating at
least 1 train per day | -1.269 | | | Pavement markings | 0.2967 | 0.2378 | | Max train speed | 0.0219 | | | Minimum train speed | 0.013 | 0.0271 | | Dispersion Parameter | 1.7198 | 2.0929 | | Log-Likelihood | -366.182 | -371.133 | | AIC | 0.759 | -371.133
0.765 | ### **Conclusion** - ❖ Developed the safety performance function (SPF) for railhighway at-grade crossings in Alabama. - Two models currently are viable. - ➤ The U.S. DOT model contains variables that are irrelevant to the prediction of RHGC crashes, at least in Alabama. - The models are based on Alabama data - ➤ Alabama-specific RHGC SPFs may not apply in other states. - ➤ Test using calibration factor or develop new SPFs. #### **Future Research** - ❖ Use Conway–Maxwell–Poisson (CMP) distribution to model crash counts at RHGCs. - Advantages of CMP - ✓ Very flexible and spans over three distribution (Geometric, Poisson and Bernoulli) - ✓ Performs well for both over-dispersed and under-dispersed data set - Motivation of using CMP - ✓ Model RHGC crash counts at different levels of severity - ❖ Work with ALDOT to develop a ranking program to prioritize RHGCs for improvements. # Thanks! Questions / Comments? ### Notes #### **USDOT** Accident Prediction Model - EI = factor for exposure index based on product of highway and train traffic - MT = factor for number of main tracks - DT = factor for number of through trains per day during daylight - HP = factor for highway paved (yes or no) - *MS* = factor for maximum timetable speed - HT = factor for highway type - *HL* = factor for number of highway lanes #### HSM Methodology Prediction Model - Train Speed (Max and Min) - AADT - Truck Percentage - Warning device Present - Pavement Markings - Train Activity (< 1 per day)