## Results of International Concrete Crosstie and Fastening System Survey



**2012 Joint Rail Conference** 

Philadelphia, PA

17-19 April 2012

Brandon J. Van Dyk, Marcus S. Dersch, J. Riley Edwards, and Christopher P.L. Barkan

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

2

U.S. Department of Transportation

Federal Railroad Administration

## Outline

- Role of International Survey in UIUC FRA Concrete
  Tie and Fastener BAA
- Survey Objectives
- Audience
- Development and Content
- Results
- Preliminary Conclusions



### FRA Tie and Fastening System BAA Objectives and Deliverables

- Program Objectives
  - Provide mechanistic design recommendations for concrete crossties and fastening system design in the US
  - Conduct experimental laboratory and field testing, leading to improved recommended practices for design
  - Conduct comprehensive international literature review and state-of-the-art assessment for design and performance
- Program Deliverables
  - Improved mechanistic design recommendations for concrete crossties and fastening systems in the US
  - Improved safety due to increased strength of critical infrastructure components
  - Centralized knowledge and document depository for concrete crossties and fastening systems



# **Survey Objectives**

- Conduct an international survey on the use and performance of concrete crossties and fastening systems
- Understand the current state-of-practice regarding the use of concrete crossties and fastening systems
- Develop an understanding of the most common types of crosstie and fastening system failures
- Continue establishing relationships and encouraging collaboration with railways, researchers, and manufacturers around the world



## **Role of International Survey**

### Analysis

- Determine typical loading for modeling systems
- Provide references for previous analyses

#### Lab

- Identify relevant international testing
- Compare US test criteria and practices with various international standards

#### **Field**

- Identify conditions where failure most commonly occurs
- Develop understanding of probabilistic loading conditions



Field

Analysis

Lab

#### Slide 6

## **Survey Audience**

- Representation from the following continents:
  - North America
  - Europe
  - Asia
  - Africa
  - Australia
- Categories of experts surveyed:
  - Infrastructure owner, operator, or maintainer
  - Academic, industry, or institutional researcher
  - Concrete crosstie or fastening system manufacturer



## **Incentives for Organizations to Participate**

- Acquisition of study results
- Inclusion in release of future publications in concrete tie and fastening system research at UIUC
- Access to reference list of journal and conference papers, design standards, and specifications

International Concrete Sleeper and Fastening System Survey



Welcome to the International Concrete Sleeper and Fastening System Survey.



## **Development of Survey**

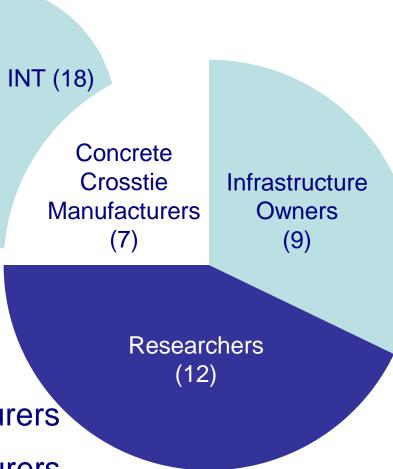
- Created lists of questions for infrastructure owners, researchers, and concrete crosstie manufacturers
- Reviewed by industry partners and internal team
- Survey tool researched and selected Zoomerang
- Created, revised, and deployed survey



# **Survey Content**

- Usage
- Crosstie Characteristics and Manufacturing Techniques
  - Concrete
  - Prestress
- Fastening System Performance and Characteristics
  - Prevalence
  - Materials
- Effectiveness and Failure
  - Design Life
  - Maintenance
  - Failure Modes
- Industry Recommended Practices and Tests
- Research








## **Survey Results – Responses**

NA (10)

- 28 Total Responses
- Geography
  - 10 in North America
  - 18 internationally
- Role in Railway Industry
  - 9 Infrastructure Owners
  - 12 Researchers
  - 7 Concrete Crosstie Manufacturers
- Two Fastening System Manufacturers





## **Survey Results – Loading Environment**

|                                            | International<br>Responses                          | North American<br>Responses                             |
|--------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|
| Average maximum<br>freight axle load*      | 29.5 tons (26.8 tonnes)                             | 39.1 tons (35.4 tonnes)                                 |
| Average maximum<br>passenger axle load*    | 21.6 tons (19.6 tonnes)                             | 29.1 tons (26.4 tonnes)                                 |
| Average concrete crosstie design axle load | 27.6 tons (25.0 tonnes)                             | 37.4 tons (33.9 tonnes)                                 |
| Average tangent crosstie spacing           | 24.2 inches<br>(61.4 centimeters)                   | 24.0 inches<br>(61.0 centimeters)                       |
| Average annual tonnage<br>(per track)      | 38.7 million gross tons (35.1 million gross tonnes) | 100.0 million gross tons<br>(90.7 million gross tonnes) |

\*Interpreted from responses due to discrepancies in wheel or axle loads



## **Survey Results – Criticality of Problems**

| Problem (higher ranking is more critical)           | Average Rank |  |  |
|-----------------------------------------------------|--------------|--|--|
| International Responses                             |              |  |  |
| Tamping damage                                      | 6.14         |  |  |
| Shoulder/fastening system wear or fatigue           | 5.50         |  |  |
| Cracking from center binding                        | 5.36         |  |  |
| Cracking from dynamic loads                         | 5.21         |  |  |
| Cracking from environmental or chemical degradation | 4.67         |  |  |
| Derailment damage                                   | 4.57         |  |  |
| Other (e.g. manufactured defect)                    | 4.09         |  |  |
| Deterioration of concrete material beneath the rail | 3.15         |  |  |
| North American Responses                            |              |  |  |
| Deterioration of concrete material beneath the rail | 6.43         |  |  |
| Shoulder/fastening system wear or fatigue           | 6.38         |  |  |
| Cracking from dynamic loads                         | 4.83         |  |  |
| Derailment damage                                   | 4.57         |  |  |
| Cracking from center binding                        | 4.50         |  |  |
| Tamping damage                                      | 4.14         |  |  |
| Other (e.g. manufactured defect)                    | 3.57         |  |  |
| Cracking from environmental or chemical degradation | 3.50         |  |  |

## **Survey Results – Importance of Research**

| Research topic (higher ranking is more important) | Average Rank |  |  |  |
|---------------------------------------------------|--------------|--|--|--|
| International Responses                           |              |  |  |  |
| Track system design                               | 4.08         |  |  |  |
| Optimize crosstie design                          | 3.93         |  |  |  |
| Fastening system design                           | 3.50         |  |  |  |
| Materials design                                  | 2.23         |  |  |  |
| Prevention or repair of rail seat deterioration   | 1.58         |  |  |  |
| North American Responses                          |              |  |  |  |
| Prevention or repair of rail seat deterioration   | 3.60         |  |  |  |
| Fastening system design                           | 3.60         |  |  |  |
| Materials design                                  | 3.00         |  |  |  |
| Optimize crosstie design                          | 2.80         |  |  |  |
| Track system design                               | 2.00         |  |  |  |



## **Design and Performance Trends**

|                                                         | International<br>Responses | North American<br>Responses |
|---------------------------------------------------------|----------------------------|-----------------------------|
| Average minimum allowable concrete strength at transfer | 6,500 psi                  | 4,700 psi                   |
| Average 28-day concrete<br>compressive strength         | 8,700 psi                  | 8,250 psi                   |
| Prominent concrete crosstie manufacturing process       | Carousel                   | Long line                   |
| Abrasion plate or frame                                 | No                         | Yes                         |
| Commonly failed components                              | Screw, clip                | Pad, rail seat              |
| Rail seat deterioration                                 | No                         | Yes                         |
| Focus of research                                       | Loading, testing, design   | Life cycle cost reduction   |



## **Fastening System Design Considerations**

- Tonnage
- Daily train volume and frequency
- Velocity of trains
- Static loads
- Dynamic impact loads
- Ability of pad to evenly distribute load to rail seat
- Abrasion of concrete rail seat by pad or abrasion plate



## Conclusions

- North American loads are, on average, substantially higher than those throughout the rest of the world
- The most critical failure concerns in North America are related to wear or fatigue on the rail seat, rail pad, or shoulder
- The most critical failure concerns **internationally** are cracking from dynamic loads, shoulder wear, and tamping damage
- Greater emphasis placed on system design and optimization internationally



# **Future Survey Use**

- Follow up with those who are willing to share unpublished test results
- Advance laboratory and field testing procedure in accordance with survey responses
- Pursue completion of research in areas determined to be most critical by industry responses
- Use responses to continue development of mechanistic design practices for concrete crossties and fastening systems



## Acknowledgements

U.S. Department of Transportation

#### Federal Railroad Administration

- Funding for this research has been provided by the Federal Railroad Administration (FRA)
- Industry Partnership and support has been provided by
  - Union Pacific Railroad
  - BNSF Railway
  - National Railway Passenger Corporation (Amtrak)
  - Amsted RPS / Amsted Rail, Inc.
  - GIC Ingeniería y Construcción
  - Hanson Professional Services, Inc.
  - CXT Concrete Ties, Inc., LB Foster Company
- For assistance in survey development:
  - Eric Gehringer, Mauricio Gutierrez, Andrew Nicol, Seth Ogan
  - Adam Heinz, Ryan Kernes, David Lange, Chris Rapp, Amogh Shurpali

FRA Tie and Fastener BAA Industry Partners:























Brandon Van Dyk Graduate Research Assistant Rail Transportation and Engineering Center – RailTEC University of Illinois at Urbana-Champaign e-mail: vandyk2@illinois.edu

