Crosstie and Elastic Fastener Field Experimentation for Mechanistic Design

David A. Lange, Marcus S. Dersch, Ryan Kernes, Justin Grassé, and J. Riley Edwards

September 29 - October 2, 2013 Indianapolis, IN

U.S. Department of Transportation

Federal Railroad Administration

Outline

- Introduction
 - Components
 - Purpose for Research
 - Project Structure
- Field Experimentation
 - Objectives
 - Instrumentation Strategy
 - Testing at Transportation Technology Center (TTC)
- Experimental Results and Preliminary Findings
 - Vertical Load Path
 - Lateral Load Path
- 3D Finite Element Model
- Future Work

Common Concrete Crosstie and Fastener Failures

Rail seat positive flexural cracking

Center negative flexural cracking

Prestress wire bond loss

Broken shoulder

Rail seat deterioration

Insulator post wear

Fastener fatigue

Pad wear

Goals of Field Instrumentation

- Lay groundwork for mechanistic design of concrete crossties and elastic fasteners
- Quantify the demands placed on each component within the system
- Develop an understanding into field loading conditions
- Provide insight for future field testing
- Collect data to validate the UIUC concrete crosstie and fastening system FE model

Indianapolis, IN

Areas of Investigation

Rail

- Stresses at rail seat
- Strains in the web
- Displacements of web/base

Fasteners/Insulator

- Strain of fasteners
- Stresses on insulator

Concrete Crossties

- Moments at the rail seat/tie center
- Stresses at rail seat
- Vertical/Lateral displacements of crossties

Rail Displacement Fixture	Vertical Web Strains
Rail Longitudinal Displacement/Strains	Vertical and Lateral Circuits
Pad Assembly Longitudinal Displacement	Shoulder Beam Insert (Lateral Force)
Pad Assembly Lateral Displacement	Embedment Gages, Vertical Circuit,
Insulator Longitudinal Displacement	 Clip Strains
Insulator Vertical Displacement	Crosstie Surface Strains
Steel Rods	MBTSS

Field Instrumentation Locations (TTC)

High Tonnage Loop (HTL)

- Curve (~5°)
- Design balance speed of 30 mph
- Safelok I Fasteners

Field Instrumentation Locations (TTC)

Railroad Test Track (RTT)

- Tangent
- Safelok I Fasteners

Loading Environment

- Track Loading Vehicle (TLV)
 - Static
 - Dynamic
- Track Loading A-Frame
 - Vertical: 0 50 kip
 - Lateral: 0 10 kips
- Freight Consist
 - 6-axle locomotive (393k)
 - Ten cars
 - Empty, 263, 286, 315
 GRL Cars
 - FAST Train
- Passenger Consist
 - 4-axle locomotive (255k)
 - Nine coaches
 - 87 GRL

September 29 - October 2, 2013 Indianapolis, IN

Railway/2013

AREMA/RSI/REMSA/RSS

Full Instrumentation

Vertical and Lateral Web Strain

Vertical and Lateral Crosstie Displacement

Fully Instrumented Rail Seat

Instrumented Clip

Lateral Rail Displacement

Lateral Pad Displacement

Longitudinal Pad Displacement

Lateral Shoulder Load Instrumentation

- Instrumented shoulder face insert
 - Original shoulder face is removed, grinded away
 - Insert designed as a beam and optimized to replace removed section
 - Measures bending strain of beam under 4-point bending
 - Measuring bending strain is a proven technique

AL CONFERENCE

Select Experimental Results

- Vertical Loading Path
 - Crosstie Support Conditions
 - Rail Seat Loads
 - Vertical Load Distribution
 - Rail Seat Pressure Distribution
- Lateral Loading Path
 - Lateral Rail Loads (Tangent and Curve)
 - Lateral Shoulder Loads

Crosstie Support Variability: Vertical Crosstie Displacement - HTL

Crosstie Support Variability: Vertical Crosstie Displacement - HTL with 10 kip zero

Rail Seat Load Variability: Vertical Rail Seat Load - HTL

Vertical Strain Distribution in the Rail

- Curve track
- Static vertical loads of 40 kips applied
- Static lateral load of 20 kips applied
- Vertical distribution of load among 5 – 7 crossties

Rail Seat Pressure Distributions Under Varying L/V Force Ratios

L/V Force Ratio 0.0 0.1 0.2 0.3 0.4 0.5 0.55 Rail Seat 3F (Far Rail)

Gauge Sides of Rail Seats 3N and 3F

Lateral Loads Acting on Curved Track

Analysis of Lateral Load Distribution

Location: RTT Equipment: TLV V = 40 kip (177.9 kN) L = 20 kip (89 kN) L/V = 0.5

Findings and Potential Design Considerations

Vertical loading

- Measured static loads had a distributed response over 5-7 crossties at the wheel rail interface, and as low as 3 crossties at the rail seat
- Vertical loading demands were highest at higher speeds on high rail
- Rail seat forces are highly dependent on the stiffness of the substructure and support conditions and range from 20% to 90% of the wheel-rail load
- Design of crossties and fastening systems should incorporate probabilistic loading conditions (wide variations of loading inputs)

Lateral loading

- Static lateral loads were distributed over 3 rail seats (approximately half of the load distribution area compared to vertical loads)
- On average, loads were found to be 3-6 times higher on curved track than on tangent track
- Design should consider transfer of lateral loads and the potential for use of specialized components on curves

Future Work

- Continue analysis of data to understand the governing mechanics of the system by investigating the:
 - Factors that determine vertical and lateral load distribution
 - Bending moments of the crossties
 - Pressure magnitude and distribution at the rail seat
 - Stresses and displacements in the fastening system
- Complete construction and begin experimentation with full scale track loading system at UIUC
- Complete validation of the UIUC finite element model using field and laboratory results
- Develop a simplified design tool to facilitate mechanistic design of concrete crossties and fastening systems
- Small-scale, evaluative experimentation on Class I Railroads

Modeling of Concrete Sleeper and **Fastening System** Rail Pad & Clip **Abrasion** Insulator frame

Shoulder Concrete Sleeper

Multiple-Crosstie Modeling

- Model is validated using field data from TTC experiments
- Both global model and sub-model are used to provide accurate representation of interaction of multiple crosstie systems
- Objective for sub-model technique: Have identical or similar global behaviors (load distribution, displacement) in both models

Acknowledgements

U.S. Department of Transportation

Federal Railroad Administration

- Funding for this research has been provided by the Federal Railroad Administration (FRA)
- Industry Partnership and support has been provided by
 - Union Pacific Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Amsted RPS / Amsted Rail, Inc.
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
 - TTX Company
- Monticello Railway Museum (Tim Crouch)
- Transportation Technology Center, Inc.
 - Dave Davis, Ken Laine, Dingqing Li, Steve Luna
- For assistance in instrumentation preparation:
 - Harold Harrison and Michael Tomas

September 29 - October 2, 2013 Indianapolis, IN

FRA Tie and Fastener BAA Industry Partners: BUILDING AMERICA®

MTRAI

Contact Information

David A Lange Professor dlange@illinois.edu Marcus S. Dersch Research Engineer mdersch2@illinois.edu Ryan G. Kernes Research Engineer rkernes2@illinois.edu

Rail Transportation and Engineering Center - RailTEC Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign 205 North Mathews Avenue Urbana, Illinois 61801

DILLINOIS

RONMENTAL ENGINEERING

]5

RES

DEPARTMENT OF CIVIL AND ENVIO

gr

22 But