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Common Concrete Crosstie and Fastener Failures
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Broken shoulderPrestress wire 

bond loss

Rail seat 

deterioration Pad wear
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Goals of Field Instrumentation

Lay groundwork for mechanistic design of concrete 
crossties and elastic fasteners

Quantify the demands placed on each component within 
the system

Develop an understanding into field loading conditions

Provide insight for future field testing

Collect data to validate the UIUC concrete crosstie and 
fastening system FE model
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Areas of Investigation
Fasteners/ Insulator

• Strain of fasteners

• Stresses on insulator

• Moments at the   

rail seat/tie center 

• Stresses at rail seat

• Vertical/Lateral 

displacements of 

crossties 

Concrete Crossties

Rail

• Stresses at rail seat

• Strains in the web

• Displacements of web/base
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Field Instrumentation Locations (TTC)

High Tonnage Loop (HTL)
Curve (~5°)

Design balance speed of 
30 mph

Safelok I Fasteners
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Field Instrumentation Locations (TTC)

Railroad Test Track 
(RTT)

Tangent 

Safelok I Fasteners
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Loading Environment
Track Loading Vehicle (TLV)

Static

Dynamic

Track Loading A-Frame

Vertical: 0 – 50 kip

Lateral: 0 – 10 kips

Freight Consist

6-axle locomotive (393k)

Ten cars

Empty, 263, 286, 315 
GRL Cars

FAST Train

Passenger Consist

4-axle locomotive (255k)

Nine coaches

87 GRL
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Full Instrumentation



Slide 13Field Testing of the Crosstie-Fastener System

Vertical and Lateral Crosstie Displacement

Vertical and Lateral Web Strain
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Fully Instrumented Rail Seat

Longitudinal Pad Displacement

Lateral Rail Displacement

Lateral Pad Displacement

Instrumented Clip
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Lateral Shoulder Load Instrumentation

• Instrumented shoulder face insert

– Original shoulder face is removed, grinded away

– Insert designed as a beam and optimized to replace 

removed section

– Measures bending strain of beam under 4-point bending

• Measuring bending strain is a proven technique
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Select Experimental Results

Vertical Loading Path

Crosstie Support Conditions

Rail Seat Loads

Vertical Load Distribution

Rail Seat Pressure Distribution

Lateral Loading Path

Lateral Rail Loads (Tangent and Curve)

Lateral Shoulder Loads
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Crosstie Support Variability: 
Vertical Crosstie Displacement –HTL

E

S U W

GC

• Curve track

• Static vertical loads

• Max applied load = 
40 kips

• Low rail: weak support 
(slack or gap in support 
system)

• Modulus according to 
Kerr ranges from 
3,600 – 10,000+ lb/in^2

Low Rail

High Rail
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Crosstie Support Variability: 
Vertical Crosstie Displacement –HTL  with 10 kip zero

E

S U W

GC

• Curve track

• Static vertical loads

• Max applied load = 
40 kips

• Subgrade modulus 
ranges from 
6000 – 12,900 lb/in^2

• Range is only
6000 – 7,800 lb/in^2 if 
rail seat C is discarded

Low Rail

High Rail
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Rail Seat Load Variability: 
Vertical Rail Seat Load - HTL

E
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GC

• Curve track

• Static vertical loads

• Max applied load = 
40 kips

• Rail seat load transfer 
percentages range 
from 42 – 94%

Low Rail

High Rail

94%

49%

45%

42%



September 29 – October 2, 2013

Indianapolis, IN

Vertical Strain Distribution in the Rail
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• Static vertical loads of  
40 kips applied
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20 kips applied

• Vertical distribution of 
load among 5 – 7 
crossties
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• Curve track

• Static vertical loads of
40 kips applied

• Vertical distribution of 
load among 3 – 5 
crossties
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Rail Seat Pressure Distributions Under 

Varying L/V Force Ratios
L/V Force 
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Rail Rotation under Varying Lateral Load
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Lateral Loads Acting on Tangent Track

Lateral

Loads

*Leading axles of a 9-car freight 

train (263, 286, 315 GRL Cars).
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Lateral Loads Acting on Curved Track
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- Median loads can 

be 4 times larger 
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Lateral Loads Acting on Curved Track
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Analysis of Lateral Load Distribution

Location: RTT

Equipment: TLV

V = 40 kip (177.9 kN)

L = 20 kip (89 kN)

L/V = 0.5
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Distribution of Lateral Loads
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Distribution of Lateral Loads
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Distribution of Lateral Loads
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Distribution of Lateral Loads
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Distribution of Lateral Loads
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Distribution of Lateral Loads
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Findings and Potential Design 
Considerations

Vertical loading

Measured static loads had a distributed response over 5-7 crossties at the 
wheel rail interface, and as low as 3 crossties at the rail seat

Vertical loading demands were highest at higher speeds on high rail

Rail seat forces are highly dependent on the stiffness of the substructure 
and support conditions and range from 20% to 90% of the wheel-rail load 

Design of crossties and fastening systems should incorporate probabilistic 
loading conditions (wide variations of loading inputs)

Lateral loading

Static lateral loads were distributed over 3 rail seats (approximately half 
of the load distribution area compared to vertical loads)

On average, loads were found to be 3-6 times higher on curved track than 
on tangent track

Design should consider transfer of lateral loads and the potential for use 
of specialized components on curves
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Future Work
Continue analysis of data to understand the governing 
mechanics of the system by investigating the:

Factors that determine vertical and lateral load 
distribution 

Bending moments of the crossties

Pressure magnitude and distribution at the rail seat

Stresses and displacements in the fastening system

Complete construction and begin experimentation with 
full scale track loading system at UIUC

Complete validation of the UIUC finite element model 
using field and laboratory results

Develop a simplified design tool to facilitate mechanistic 
design of concrete crossties and fastening systems

Small-scale, evaluative experimentation on Class I 
Railroads
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Modeling of Concrete Sleeper and 
Fastening System

Rail

Concrete Sleeper

Clip
Insulator

Shoulder

Pad & 

Abrasion 

frame
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Multiple-Crosstie Modeling
• Model is validated using field data from TTC experiments

• Both global model and sub-model are used to provide accurate 

representation of interaction of multiple crosstie systems

• Objective for sub-model technique: Have identical or similar global 

behaviors (load distribution, displacement) in both models

Global Model
Detailed Sub-Model
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Full-Scale Track Loading System (Under Construction)



September 29 – October 2, 2013

Indianapolis, IN

Acknowledgements

Funding for this research has been provided by the
Federal Railroad Administration (FRA)

Industry Partnership and support has been provided by

Union Pacific Railroad

BNSF Railway

National Railway Passenger Corporation (Amtrak)

Amsted RPS / Amsted Rail, Inc.

GIC Ingeniería y Construcción

Hanson Professional Services, Inc.

CXT Concrete Ties, Inc., LB Foster Company

TTX Company

Monticello Railway Museum (Tim Crouch)

Transportation Technology Center, Inc.

Dave Davis, Ken Laine, Dingqing Li, Steve Luna

For assistance in instrumentation preparation:

Harold Harrison and Michael Tomas

FRA Tie and Fastener BAA

Industry Partners:



September 29 – October 2, 2013

Indianapolis, IN

Contact Information

David A Lange

Professor

dlange@illinois.edu

Marcus S. Dersch

Research Engineer

mdersch2@illinois.edu

Ryan G. Kernes

Research Engineer

rkernes2@illinois.edu

Rail Transportation and Engineering Center - RailTEC

Department of Civil and Environmental Engineering

University of Illinois at Urbana-Champaign

205 North Mathews Avenue

Urbana, Illinois 61801



September 29 – October 2, 2013

Indianapolis, IN

Questions?


