Testing of Concrete Sleepers and Fastener Systems for the Understanding of Mechanistic Behavior

10th International Heavy Haul Association Conference New Delhi, India

6 February 2013

Justin Grassé, David Lange

Presenter: Marcus Dersch

ILLINOIS AT URBANA-CHAMPAIGN

U.S. Department of Transportation

Federal Railroad Administration UNIVERSITY

Outline

- Background
- UIUC Concrete Sleeper Research
 Overview
- Objectives of Field Research
- Field Instrumentation Strategy
- Testing at Transportation Technology Center (TTC)
 - Pueblo, CO, USA
- Experimental Results
- Findings
- Future Work

Fastening System Components Clip Rail Insulator Shoulder **Rail Pad** Assembly

Concrete Crosstie

2012 International Survey Results

Criticality of Problems – North American Responses

Failure Mode	Average Rank
Deterioration of concrete material beneath the rail	6.43
Shoulder/fastening system wear or fatigue	6.38
Cracking from dynamic loads	4.83
Derailment damage	4.57
Cracking from center binding	4.50
Tamping damage	4.14
Other (e.g. manufactured defect)	3.57
Cracking from environmental/chemical degradation	3.50

Research Topic	Average Rank
Prevention or repair of rail seat deterioration	3.60
Fastening system design	3.60
Materials design	3.00
Optimize crosstie design	2.80
Track system design	2.00

Research Levels (and Examples)

Research Sponsors and Projects

- CN Fellowship in Rail Engineering (RSD)
- Association of American Railroads (AAR) Technology Scanning Program (RSD and Fastening System Wear and Fatigue)
- Amsted RPS / Amsted Rail, Inc. (Fastening System Wear and Fatigue)
- NEXTRANS Region 5 Transportation Center (RSD)
- Federal Railroad Administration (FRA) (Fastening System Wear and Fatigue, Cracking, Environmental, etc.)
- National University Rail (NURail) (Fastening System Wear and Fatigue)

National University Rail Center

U.S. Department of Transportation Federal Railroad Administration

FRA Tie and Fastener Project Structure

Goals of Field Instrumentation

- Lay groundwork for mechanistic design of concrete sleepers and elastic fasteners
- Quantify the demands placed on each component within the system
- Develop an understanding into field loading conditions
- Provide insight for future field testing
- Collect data to validate the UIUC concrete sleeper and fastening system FE model

Areas of Investigation

Rail

- Stresses at rail seat
- Strains in the web
- Displacements of web/base

Fasteners/ Insulator

- Strain of fasteners
- Stresses on insulator

Concrete Sleepers

•

- Moments at the rail seat
- Stresses at rail seat
- Vertical displacements of sleepers

Slide 10

2012 Field Instrumentation Map

- Full Instrumentation
 - Lateral, vertical, and chevron strain gauges on rail
 - Embedment and external concrete strain gauges on crosstie
 - Matrix based tactile surface sensors at rail seat (at rail seat W)
 - Linear potentiometers on rail and crosstie
- Partial Instrumentation
 - Vertical strain gauges on rail
 - Matrix based tactile surface sensors (at rail seats G and Y)
 - Linear potentiometers on crosstie (at rail seats C and G)

- TTC (Pueblo, CO, USA)
- High Tonnage Loop (HTL)
 - Curve (~5°)
 - Safelok I Fasteners

- TTC (Pueblo, CO, USA)
- Railroad Test Track (RTT)
 - Tangent
 - Safelok I Fasteners

Loading Environment

- Track Loading Vehicle (TLV) Freight Consist
 - Static
 - Dynamic

- - 6-axle locomotive
 - 30t axles (393 GRL)
 - Instrumented car
 - Nine cars
 - 30, 33, and 36t axles (263, 286, 315 GRL cars)
 - Passenger Consist
 - 4-axle locomotive
 - 29t axles (255 GRL)
 - Nine coaches
 - 10t axles (87 GRL cars)

Fully Instrumented Rail Seats

Instrumented Low Rail

Field-side Instrumentation

Lateral Rail Displacement

Data Acquisition System

Lateral Loads Acting on a Tangent Track

Lateral Loads Acting on a Tangent Track

Lateral Loads Acting on a Curve Track

Variability in Loading Conditions

Effect of Train Speed on Sleeper Displacement

Effect of Train Speed on Sleeper Deflection (cont.)

Variability in Support Conditions

- Curve/Static Loads
- Each point = +22kN (+5kips) vertical load
- Low rail: weak support (slack or gap in support system)
 - Low rail seat forces
- High rail: stiff boundary conditions (wellsupported)
 - High rail seat forces

Variability in Support Conditions

by the bending of the rail

Preliminary Findings with Potential Design Considerations

- The lateral loading demands were 5.5 times higher in the curve than on tangent track
 - Design should consider specialized components in the curve
- The vertical and lateral loading demands on tangent track are not dependent on train speed
 - Design should not weight speed highly on tangent track
- There is negligible correlation between concurrently acting lateral and vertical loads on tangent track
- Dynamic vertical sleeper displacement never exceeded the purely static response
- Rail seat forces are highly dependent on the stiffness of the substructure and support conditions and can range from below 20% to over 90% of the wheel-rail load
 - Design should incorporate probabilistic loading conditions

Future Work

- Continued data analysis to understand the governing mechanics of the system by investigating the:
 - elastic fastener (clamp) strain response
 - number of ties effected simultaneously
 - bending modes of the sleepers
 - pressure magnitude and distribution at the rail seat
- Continued **comparison and validation** of the UIUC finite element model (Chen, Shin)
- Preparation for **instrumentation trip** (Summer 2013)
 - Focus on lateral load path by gathering
 - relative lateral sleeper displacements
 - global lateral sleeper displacements
 - load transferred to the clamp, insulator-post, and shoulder
- Small-scale, evaluative tests on Class I Railroads

Acknowledgements

U.S. Department of Transportation

Federal Railroad Administration

- Funding for this research has been provided by the Federal Railroad Administration (FRA)
- Industry Partnership and support has been provided by
 - Union Pacific Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Amsted RPS / Amsted Rail, Inc.
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
 - Vince Peterson, Pelle Duong, George Righter
- Monticello Railway Museum (Tim Crouch)
- Transportation Technology Center, Inc.
 - Dave Davis, Ken Laine, Dingqing Li, Steve Luna
- For assistance in instrumentation preparation:
 - Harold Harrison, Michael Tomas, Jacob Henschen, Thomas Frankie

FRA Tie and Fastener BAA Industry Partners:

Questions?

Marcus Dersch Department of Civil and Environmental Engineering University of Illinois, Urbana-Champaign Email: mdersch2@illinois.edu

LINOIS

AL ENGINEERING

DEPARTMENT OF CIVIL AND EP