Finite Element Modeling of the Fastening Systems and the Concrete Sleepers in North America

10th International Heavy Haul Association Conference 4-6 February 2013 New Delhi, India

George Zhe Chen, Moochul Shin, and Professor. Bassem O. Andrawes

Outline

- Research Objective and the Role of Modeling
- State of the Art
- Component Modeling
- System Modeling
 - Fastening System (2D and 3D)
 - Single-Sleeper System Modeling
 - Multiple-Sleeper System Modeling
- Conclusions
- Future Work

State of the Art

Track System Modeling

- Simplified fastening systems
- Focused on vertical loading
- Simplified support conditions

(Lundqvist and Dahlberg, 2005 - Sweden)

(Tangtragulwong 2009)

Shoulder Concrete Sleeper

Component Modeling

Rail Clip

Rail Clip model

Component Modeling

Rail Shoulder

Rail Shoulder model

Component Modeling

Rail Insulator

Rail Insulator model

Component Modeling: Validation

Clip Model

- Model Features:
 - Concrete material property: damage plasticity model
 - Connector element is used to simulate the bond relationship between concrete and strand
 - The effect of confining pressure on material property is considered in ballast modeling

3-D elastic spring connection between concrete and strand (Pozolo and Andrawes 2011)

• A bonding force-slip relationship is defined in the model

Modeling of Concrete Crosstie and Fastening System

Component Modeling: Concrete Sleeper and Ballast

Positions of strands

Rail seat area is between 0.39 m to 0.67 m

Position of concrete surface strain

Rail seat area is between 0.39 m to 0.67 m

 Prestress and static loading (133.4 kN) is applied to the model to look into component stress distribution and system deflection.

- In comparison with full bond model, relative-slip bond model can prevent unreasonable stress concentration and provide more realistic simulation for concrete-strand interaction
- At a wheel loading of 133.4 kN elasto-plastic model could provide sufficiently accurate estimation for the performance of ballast, but non-uniform material model is needed at higher loading

Lateral compressive stress contour (full bond model & slip bond model)

Deformation contour of under the vertical loading

System Modeling: 2D and 3D Modeling

2D Modeling

3D Modeling

System Modeling: Fastening Systems

Friction Model between component: Coulomb Model

Between the components:

- Force due to contact pressure
- Force due to friction stress

System Modeling: Fastening Systems

System Modeling: Single-Sleeper Modeling

Laboratory Test Validation

System Modeling: Single-Sleeper Modeling

- Strain gauges are attached to the rail to measure vertical web strain
- Lateral loading is applied on rail web.

System Modeling: Single-Sleeper Modeling

Comparisons of strains

System Model: Multiple-Sleepers Modeling

- Track loading vehicle (TLV) applying vertical and lateral loads to the track structure in field
- The symmetric model including 5 Sleepers

Simplified model: Fastening system were replaced by BCs and pressure

Detailed model with the fastening system

Conclusions

- Clip model was validated with manufacturer data
- With the fastening system model, the loading path (vertical and lateral) can be identified
- Current laboratory tests were validated, and good agreement was observed
- Multiple-sleeper models have been developed and is ready to validate the track system models in field

Future Work

- Further comparisons: More measurements on the lab testing set-ups will be deployed and compared with the models
- Large-scale modeling: More Models will be built to look into the distribution of loading among multiple ties and the discrete support condition of rail
- Realistic loading: More load types (vertical, lateral, and longitudinal loads) and load forms (static and dynamic load) will be applied to the track system to better simulate the actual loading environment
- Parametric studies: Parametric studies about material properties and geometric dimensions will be conducted using the model

Acknowledgements

- U.S. Department of Transportation
- Federal Railroad Administration
 - Funding for this research has been provided by the Federal Railroad Administration (FRA)
 - Industry Partnership and support has been provided by
 - Union Pacific (UP) Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Amsted RPS / Amsted Rail, Inc.
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
 - Professor Tutumluer for assisting with ballast modeling. (UIUC)
 - Professor Peterman for strand bond-slip test data. (KSU)
 - Amsted RPS (Jose Mediavilla) and CXT Concrete Tie Inc. (Pelle Duong) for providing resources including engineering drawings, models, and other advice.

FRA Tie and Fastener BAA Industry Partners:

BUILDING AMERICA®

Questions?

Research Engineer, Ryan Kernes

Department of Civil and Environmental Engineering University of Illinois, Urbana-Champaign Email: rkernes2@illinois.edu