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FRA Tie and Fastening System &

U.S. Department of Transportation

BAA ObJ eCt I VeS a-n d Del Iverab | eS Federal Railroad Administration

FRA Tie and Fastener BAA

« Program Objectives Industry Partners:

— Conduct comprehensive international literature review and =
state-of-the-art assessment for design and performance "”” BUILDING AMERICA

— Conduct experimental laboratory and field testing, leading V-7, A~F -

to improved recommended practices for design =R ATLWA Y
A BPoNAT IR AKS®

— Provide mechanistic design recommendations for concrete N — o
sleepers and fastening system design in the US

« Program Deliverables

— Improved mechanistic design recommendations for
concrete sleepers and fastening systems in the US

— Improved safety due to increased strength of critical
infrastructure components

— Centralized knowledge and document depository for @ HANSON
concrete sleepers and fastening systems
i o LBFoster

CXT Concrete Ties
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Current Design Process
 Found in AREMA Manual on Railway Engineering

« Based largely on practical experience:

— Lacks complete understanding of failure
mechanisms and their causes

— Empirically derives loading conditions
(or extrapolates existing relationships)

e Can be driven by production and installation practices

* Improvements are difficult to implement without
understanding complex loading environment

8-9 ft
< >
Insulator

I 56.51n

. L | -
Shoulder insert Tie pad between
rail base and
rail seat
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Pavement Example of Mechanistic Design

“Mechanistic Interpretation of Nondestructive Pavement
Testing Deflections”, 1981

e EXxploration of factors affecting pavement response to
various loading regimes

« Material properties measured from laboratory and
backcalculated from system testing agree

— Can be used for asphalt concrete overlay design

* |ILLI-PAVE: stress dependent finite element model used
to interpret measured deflections

Applicable to the rail industry?

Source: M.S. Hoffman & M.R. Thompson
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Principles of Mechanistic Design

1. Quantify track system input loads (wheel loads)

2. Qualitatively establish load path (free body diagrams,
basic modeling, etc.)

— Establish the locations for load transfer

3. Quantify loading conditions at each interface /
component (including displacements)

a. Laboratory experimentation
b. Field experimentation
c. Analytical modeling (basic — complex/system)

4. Link quantitative data to component geometry and
materials properties (materials decision)
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Principles of Mechanistic Design (cont.)

.

9.

Relate loading to failure modes (e.g., how does
lateral loading relate to post insulator wear?)

Investigate interdependencies through modeling
Run parametric analyses

— Materials, geometry, load location
Development and testing of innovative designs
— Novel rail pad, sleeper, insulator designs

— Geometry and materials improvements

Establish mechanistic design practices

10. Adoption into AREMA Recommended Practices
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1. Quantifying System Input Loads

 Methods of data collection:
— Wheel Impact Load Detectors (WILD)
— Instrumented Wheel Sets (IWS)
— Truck Performance Detectors (TPD)
— UIUC Instrumentation Plan (FRA Tie BAA)

 Most methods are used to monitor rolling stock
performance and assess vehicle health

e Can provide insight into the magnitude and
distribution of loads entering track structure



Wheel Impact Load Detectors (WILD)
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Vertical Wheel Loads — Edgewood, MD

Peak Vertical Load (kN)
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Effect of Traffic Type on Peak Wheel Load
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Effect of Wheel Condition on Peak Wheel Load
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Feak Load (kM)
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Other Factors Affecting Wheel Loads

o Speed
 Temperature and moisture
e Position within the train

e Curvature _
Need alternative

e Grade — data collection
methods

* Track quality
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Rail Seat Load Calculation Methodologies
Wheel Load (kips)
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2. Establishment of the Qualitative Load Path

Development of a static load path map for entire
concrete sleeper and fastening system

Identification and classification of all forces acting on
and internal forces within each component

Helps understand demands on each component
ldentification of component interactions

Development of component relationships
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2. Establishment of the Qualitative Load Path
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3. Quantifying Loads: Instrumentation

Rall Fasteners/ Insulator
e Stresses at rail seat e Strain of fasteners
e Strains in the web e Stresses on insulator

« Displacements of head/base
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3a. Laboratory Instrumentation

« Development and refinement of field instrumentation \ - ,_

 Research with controlled variables to investigate

— Displacement of rail and fastening system
components

— Pressure distribution under different L/V ratios,
support conditions, and fastening system
components
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3b Fleld Instrumentatlon

S0

Monticello Railway
Museum — Fall 2011

* Proof of concept for
future field
experimentation

Transportation Technology
Center (TTC) — July 2012

e Seven consecutive
sleepers instrumented

e Tangent and curve sections

.i=.

« Additional testing at TTC — "
May 2013 —
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3c. Quantifying Loads: Finite Element Modeling

« Component models to provide reference for lab and
field experimental efforts

e Detailed structural model for conducting parametric
analyses on materials and geometries of components

e System model to understand component interactions

—— Manufacturer’s Curve
-= U|UC Model

Clamping Force

Displacement



3c. System Modeling: Lateral Load Path
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Conclusions

o Passenger and freight loads on shared infrastructure
can cause divergent design recommendations due to

varied loading

— Quantification of loads is critical in improving design
and performance of infrastructure

— Component interaction must be well understood for
adequate design methodologies

 Mechanistic design provides a framework for improved
recommended design practices

o Ultimate objective: increase safety and lower life cycle
costs of the concrete sleeper and fastening system
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