Field Testing of the Crosstie-Fastener System for the Understanding of Mechanistic Behavior

Joint Rail Conference 2013 Knoxville, TN 18 April 2013

Justin Grassé, David Lange

Outline

- Objectives of Field Research
- Field Instrumentation Strategy
- Testing at Transportation Technology Center (TTC)
- Experimental Results
- Findings
- Future Work

FRA Tie and Fastener Project Structure

Goals of Field Instrumentation

- Lay groundwork for mechanistic design of concrete crossties and elastic fasteners
- Quantify the demands placed on each component within the system
- Develop an understanding into field loading conditions
- Provide insight for future field testing
- Collect data to validate the UIUC concrete crosstie and fastening system FE model

Areas of Investigation

Rail

- Stresses at rail seat
- Strains in the web
- Displacements of web/base

Fasteners/Insulator

- Strain of fasteners
- Stresses on insulator

Concrete Crossties

- Moments at the rail seat/tie center
- Stresses at rail seat
- Vertical/Lateral displacements of crossties

2012 Field Instrumentation Map

- Full Instrumentation
 - Lateral, vertical, and chevron strain gauges on rail
 - Embedment and external concrete strain gauges on crosstie
 - Matrix based tactile surface sensors at rail seat (at rail seat W)
 - Linear potentiometers on rail and crosstie
- Partial Instrumentation
 - Vertical strain gauges on rail
 - Matrix based tactile surface sensors (at rail seats G and Y)
 - Linear potentiometers on crosstie (at rail seats C and G)

Field Instrumentation Locations

- TTC (Pueblo, CO, USA)
- High Tonnage Loop (HTL)
 - Curve (~5°)
 - Safelok I Fasteners

Field Instrumentation Locations

- TTC (Pueblo, CO, USA)
- Railroad Test Track (RTT)
 - Tangent
 - Safelok I Fasteners

Loading Environment

- Track Loading Vehicle (TLV)
 - Static
 - Dynamic
 - Track modulus

- Freight Consist
 - 6-axle locomotive (393k)
 - Instrumented car
 - Nine cars
 - 263, 286, 315 GRL Cars
- Passenger Consist
 - 4-axle locomotive (255k)
 - Nine coaches
 - 87 GRL

Slide 10

Fully Instrumented Rail Seats

Instrumented Low Rail

Field-side Instrumentation

Gauge-side Instrumentation

Lateral Rail Displacement

Data Acquisition System

Experimental Results

Lateral Loads Acting on Tangent Track

Lateral Loads Acting on Tangent Track

- No correlation between lateral loads and train speed on tangent track.

*Leading axles of a 9-car freight train (263, 286, 315 GRL Cars).

Lateral Loads Acting on Curved Track

- Median loads can be 4 times larger than loads on tangent track.

Lateral Loads Acting on Curved Track

Vertical Loads Acting on Tangent Track

Vertical Loads Acting on Curved Track

Variability in Loading Conditions (High Rail)

Variability in Loading Conditions (Low Rail)

Variability in Loading Conditions

*HR = High Rail; LR = Low Rail

Effect of Train Speed on Crosstie Deflection

Variability in Support Conditions

- Curve/Static Loads
- Each point = +5kips vertical load
- Max load = 40kips
- Low rail: weak support (slack or gap in support system)
 - Low rail seat forces
- High rail: stiff boundary conditions (wellsupported)
 - High rail seat forces

Variability in Support Conditions

(over 75%) is transferred to adjacent crossties and resisted by the bending of the rail

Vertical Strain Distribution, High Rail

Single Clip Behavior

Courtesy of George Chen (UIUC)

Clamping Force Distribution (Curve)

Change of Clamping Force on High Rail

Change in Clamping Force on Low Rail

Compliance of Gauge-Side Clips

Compliance of Field-Side Clips

Findings with Potential Design Considerations

- Lateral loading demands were measured 3-6 times as high on curved track than on tangent track, on average
 - Design should consider specialized components in the curve
- Vertical and lateral loading demands show positive correlation on high rail, slight negative correlation on low rail, and no correlation on tangent track
- Vertical loading demands were highest at higher speeds on high rail
- Rail seat forces are highly dependent on the stiffness of the substructure and support conditions and range from 20% to 90% of the wheel-rail load
 - Design should incorporate probabilistic loading conditions
- Measured static loads had a distributed response over about 5-7 crossties
- The observed clip response within the system was relatively elastic and well below the point of yield
- Clip compliance is relatively consistent per rail seat over different speeds
 - Design could consider clip as linear elastic spring for simplification

Slide 37

Future Work

- Continued **data analysis** to understand the governing mechanics of the system by investigating the:
 - factors that determine load distribution
 - bending moments of the crossties
 - pressure magnitude and distribution at the rail seat
- Continued comparison and validation of the UIUC finite element model
- Preparation for **instrumentation trip** (Summer 2013)
 - Focus on lateral load path by gathering
 - relative lateral crosstie displacements
 - longitudinal stresses and displacements of the rail
 - load transferred to the clamp, insulator-post, and shoulder
- Small-scale, evaluative tests on Class I Railroads

Acknowledgements

U.S. Department of Transportation

Federal Railroad Administration

- Funding for this research has been provided by the Federal Railroad Administration (FRA)
- Industry Partnership and support has been provided by
 - Union Pacific Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Amsted RPS / Amsted Rail, Inc.
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
 - Vince Peterson, Pelle Duong, George Righter
- Monticello Railway Museum (Tim Crouch)
- Transportation Technology Center, Inc.
 - Dave Davis, Ken Laine, Dingqing Li, Steve Luna
- For assistance in instrumentation preparation:
 - Harold Harrison, Michael Tomas, Jacob Henschen, Thomas Frankie

FRA Tie and Fastener BAA Industry Partners:

Questions?

Justin Grassé Department of Civil and Environmental Engineering University of Illinois, Urbana-Champaign Email: jgrasse2@illinois.edu

DILLINOIS

DEPARTMENT OF CIVIL AND EN

TAL ENGINEERING