Finite Element Modeling Crosstie and Fastening System at UIUC

Joint Rail Conference 2013 Knoxville, TN 18 April 2013

Moochul Shin, George Zhe Chen and Professor Bassem O. Andrawes

U.S. Department of Transportation

Federal Railroad Administration

Outline

- Research Objective and the Role of Modeling
- State of the Art
- Component Modeling
- System Modeling
 - Fastening System (2D and 3D)
 - Single-Tie System Modeling
 - Multiple-Tie System Modeling
- Conclusions
- Future Work

State of the Art

Track System Modeling

- Simplified fastening systems
- Focused on vertical loading
- Simplified support conditions

(Lundqvist and Dahlberg, 2005 - Sweden)

(Tangtragulwong 2009)

Component Modeling

Rail Clip

Rail Clip model

Component Modeling

Rail Shoulder

Rail Shoulder model

Component Modeling

Rail Insulator

Rail Insulator model

Component Modeling: Validation

Clip Model

- Model Features:
 - Concrete material property: damage plasticity model
 - Connector element is used to simulate the bond relationship between concrete and strand
 - Prestress and vertical static loading is applied in the model
 - The effect of confining pressure on material property is considered in ballast modeling

3-D elastic spring connection between concrete and strand (Pozolo and Andrawes 2011)

- A bonding force-slip relationship is defined in the model

- Different bond-slip behavior are defined for parametric study.
- The force-displacement relationship of connectors was simplified as elastic.
- Range of parameter is justified by pull-out tests of similar material in literature.

- Transfer length gradually reduced with higher bond-slip stiffness.
- The rail-seat region is within transfer length with in case 1 and case 2.

bond-slip stiffness	k= 20000 lb/in/in	k=40000 lb/in/in	k=60000 lb/in/in	k=80000 lb/in/in
transfer length (in)	22	16	14	12

- The bond slip stiffness had little effect on the concrete prestress at the top surface of tie center.
- The concrete prestress at the bottom surface of rail seat region gradually increased with higher bond-slip stiffness.

Top surface of the crosstie center

Bond slip stiffness	k= 20000 lb/in/in		k=40000 lb/in/in	
Surface position	Rail seat	Tie center top	Rail seat bottom	Tie center top
Surface position	bottom surface	surface	surface	surface
Concrete surface				
stress after prestress	-1793	-2416	-1863	-2414
release (psi)				
¥/				
Bond slip stiffness	k=6000	0 lb/in/in	k=80000) lb/in/in
Bond slip stiffness	k=6000 Rail seat	0 lb/in/in Tie center top	k=8000 Rail seat bottom) lb/in/in Tie center top
Bond slip stiffness Surface position	k=6000 Rail seat bottom surface	0 lb/in/in Tie center top surface	k=8000 Rail seat bottom surface) lb/in/in Tie center top surface
Bond slip stiffness Surface position Concrete surface	k=6000 Rail seat bottom surface	0 lb/in/in Tie center top surface	k=8000 Rail seat bottom surface) lb/in/in Tie center top surface
Bond slip stiffness Surface position Concrete surface stress after prestress	k=6000 Rail seat bottom surface -1880	0 lb/in/in Tie center top surface -2412	k=8000 Rail seat bottom surface -1886) lb/in/in Tie center top surface -2411

2D Modeling

3D Modeling

System Modeling: Fastening Systems

Lateral Loading Path

Lateral Force to a Shoulder

Vertical Force:

1. Magnitude: 32.5 kips

Quantifying lateral load on the insulator post (F2)

Instrumented shoulder face insert

Lateral Force to a Shoulder

Changes of the Clamping Force

(Grasse JRC Presentation, 2013)

Changes of the Clamping Force

Vertical Force:

- 1. Location: Gage, Center, Field
- 2. Magnitude: 36 kips

Change of the Clamping Force

System Modeling: Single-Tie Modeling

Laboratory Test Validation

System Modeling: Single-Tie Modeling

- Strain gauges are attached to the rail to measure vertical web strain
- Lateral loading is applied on rail web.

System Modeling: Single-Tie Modeling

Comparisons of strains

System Model: Multiple-Tie Modeling

- Track loading vehicle (TLV) applying vertical and lateral loads to the track structure in field
- The symmetric model including 5 ties

Simplified model: Fastening system were replaced by bcs and pressure

Detailed model with the fastening system

Conclusions

- Some component models were validated with manufacturer data
- Single tie model was used to study bond-slip behavior of strands
- With the fastening system model, the loading path (vertical and lateral) can be identified
- Current laboratory tests were validated, and good agreement was observed
- Multiple tie models have been developed and ready to validate the track system models in field

Future Work

- Further comparisons: More measurements on the lab testing set-ups will be deployed and compared with the models
- Validation of FE models in field: Comparisons with data collected with the field instrumentations at Transportation Technology Center, Pueblo, CO
- Realistic loading: More load types (vertical, lateral, and longitudinal loads) and load forms (static and dynamic load) will be applied to the track system to better simulate the actual loading environment
- Parametric studies: Parametric studies about material properties and geometric dimensions will be conducted using the model
- Simplified analytical tool

Acknowledgements

- U.S. Department of Transportation
- Federal Railroad Administration
 - Funding for this research has been provided by the Federal Railroad Administration (FRA)
 - Industry Partnership and support has been provided by
 - Union Pacific (UP) Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Amsted RPS / Amsted Rail, Inc.
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
 - Professor Erol Tutumluer for assisting with ballast modeling. (UIUC)
 - Amsted RPS (Jose Mediavilla) and CXT Concrete Tie Inc. (Pelle Duong) for providing resources including engineering drawings, models, and other advice.

FRA Tie and Fastener BAA Industry Partners:

Questions?

Moochul Shin

Department of Civil and Environmental Engineering University of Illinois, Urbana-Champaign Email: mshin7@illinois.edu