Mechanics of Insulator Behavior in Concrete Crosstie Fastening Systems

Joint Rail Conference

Knoxville, TN

16 April 2013

Brent Williams, Riley Edwards, Ryan Kernes

Outline

- Current insulator performance
- Objectives of research
- Analysis of failure modes and causes
- Relevant material properties related to failure modes
- Preliminary testing and results
- Future work

Current insulator performance

- 25 million concrete crossties in North America
- Insulator performance is not consistently meeting expectations
 - Desired life cycle of insulator is life of rail
- Failures seen predominantly in curves
- Increase life cycle by mitigating causes of failure

Objectives of research

- Understand the behavior of the insulator under loading conditions and environments associated with failure
 - Forces in the insulator
 - Deformation and relative slip
- Investigate innovative materials and their properties
- Find optimized designs and materials that ultimately lead to a longer service life

Insulator orientation

Shoulder orientation

Clip retention area

Functions of an insulator

- Establish and maintain gauge
- Protect shoulder and attenuate load entering shoulder
- Provide electrical isolation between metallic surfaces
- Transfer clamping force from clip to rail

Analysis of failure modes and causes

- Failure Mode and Effect Analysis (FMEA) used to define and identify causes and effects of failure
- Failure results in wide gauge, shunt in track circuit, excessive rail movement, expedited wear of other components
- Potential failure mechanisms:
 - Abrasion
 - Bending or deformation
 - Crushing

Optimized material properties can help mitigate these failure mechanisms

Insulator failure mechanisms - abrasion

- Important material properties
 - Shear strength
 - Abrasion resistance

Insulator failure mechanisms - bending or deformation

- Important material properties
 - Flexural strength
 - Cold temperature impact

Insulator failure mechanisms - crushing

- Important material properties
 - Compressive and tensile strength

Design and performance considerations

- Environmental conditions affecting component material properties
 - Temperature
 - UV light
 - Presence of moisture
 - Nylon has a propensity to absorb moisture
- Continuous loading
 - Fatigue characteristics from passing trains
 - Creep characteristics from seating loads
- · Changes in properties between manufacture and field

Quantifying insulator demands

- Quantifying force transmitted through insulator post is paramount to understanding behavior or component
 - Lateral load measurement through post
 - Compressive force
- Deformation and relative slip of insulator is also key
 - Longitudinal translation
 - Vertical post movement relative to rail and shoulder

Past work – BNSF lateral load measurement

- Instrumented field and gauge side insulator post
- Measured compressive force in post on 7-10° curve
- Key findings
 - 8-10 kip lateral force needed to transfer load to adjacent ties
 - 10 kip force imparted into system due to thermal expansion of rail
 - Instrumentation failed under such high loads

Quantifying lateral load entering shoulder face

- Instrumented shoulder face insert
 - Original shoulder face is removed
 - Insert designed as a beam and optimized to replace removed section
 - Measures bending strain of beam under 4-point bending
 - Measuring bending strain is a proven technique

Laboratory proof of concept

- Instrumented shoulder face insert tested on Pulsating Load Testing Machine (PLTM) at UIUC
- Varied lateral load from 1,800 to 18,000 lbf
- Varied L/V ratio from 0.1 to 0.5
- Tested dynamic loading at 3 Hz
- Representative loading conditions
 - Sharp curvature
 - Demanding conditions

Transfer of lateral load to shoulder face

Transferred load through shoulder

Preliminary conclusions from testing

- Percentage of lateral load transferred through post increases as L/V ratio increases
- Lateral loads are resisted by friction at low L/V ratios
- Lower coefficients of friction between concrete tie and rail pad result in increased lateral load through post
- Reliable results can be achieved with instrumented shoulder face insert in laboratory
- Successful laboratory testing results make it a viable way to measure lateral load in the field

Future work

- Laboratory testing of lateral load measurement systems
- Laboratory testing to determine failure thresholds
- Field validation testing with lateral load measurement systems at Transportation Technology Center (TTC)
- Compare field data with lab and model data
- Measurement of lateral load on in-service track
- Determine correlations between fastening system component behavior and various material properties
- Propose optimized component materials and design

Acknowledgements

- Funding for this research provided by
 - Association of American Railroads (AAR) Technology Scanning Program
 - Federal Railroad Administration (FRA)
- For providing direction, advice, and resources:
 - BNSF Railway: John Bosshart
 - H2 Visions: Harold Harrison
 - Pandrol Track Systems: Bob Coats
 - CSX Transportation: Jim Beyerl
 - Amsted Rail Amsted RPS: Jose Mediavilla
 - UIUC: Tim Prunkard, Darold Marrow, Don Marrow
 - Instrumentation Services, Inc.: Don Rhodes, Bill Rhodes
- For assisting with research and lab work:
 - Chris Rapp, Thiago Bizarria, Justin Grasse, Sihang Wei

U.S. Department of Transportation

Federal Railroad Administration

Questions

Brent Williams
Graduate Research Assistant
Railroad Transportation and Engineering Center – RailTEC

email: bwillms3@illinois.edu

Office: (217) 244-6063