## **Finite Element Modeling Crosstie and Fastening System at UIUC**



**Transportation Research Board** 92<sup>nd</sup> Annual Meeting Washington, D.C. 13-17 January. 2013

Professor. Bassem O. Andrawes, Moochul Shin and George Zhe Chen

**U.S. Department of Transportation** 



### Outline

- Research Objective and the Role of Modeling
- State of the Art
- Component Modeling
- System Modeling
  - Fastening System (2D and 3D)
  - Single-Tie System Modeling
  - Multiple-Tie System Modeling
- Conclusions
- Future Work





### **State of the Art**

#### Track System Modeling

- Simplified fastening systems
- Focused on vertical loading
- Simplified support conditions





#### (Lundqvist and Dahlberg, 2005 - Sweden)



#### (Tangtragulwong 2009)

# **Concrete Crosstie and Fastening System** Rail Pad & Clip Abrasion Insulator frame

### Shoulder Concrete crosstie

### **Component Modeling**



#### Rail Clip

#### Rail Clip model

### **Component Modeling**



Rail Shoulder



Rail Shoulder model

## **Component Modeling**



#### **Rail Insulator**

#### Rail Insulator model

### **Component Modeling: Validation**

Clip Model



- Model Features:
  - Concrete material property: damage plasticity model
  - Connector element is used to simulate the bond relationship between concrete and strand
  - Prestress and vertical static loading is applied in the model
  - The effect of confining pressure on material property is considered in ballast modeling



3-D elastic spring connection between concrete and strand (Pozolo and Andrawes 2011)

• A bonding force-slip relationship is defined in the model









 Prestress and static loading (30 kips) is applied to the model to look into the stress distribution and transfer length after release.

- In comparison with full bond model, relative-slip bond model can prevent unreasonable stress concentration and provide more realistic simulation for concrete-strand interaction
- At a wheel loading of 30kips elasto-plastic model could provide sufficiently accurate estimation for the performance of ballast, but non-uniform material model is needed at higher loading



Lateral compressive stress contour (full bond model & slip bond model)



Deformation contour of under the vertical loading

## System Modeling: 2D and 3D Modeling

### **2D Modeling**

### **3D Modeling**



## **System Modeling: Fastening Systems**



#### Friction Model between component: Coulomb Model



Between the components:

- Force due to contact pressure
- Force due to friction stress

## System Modeling: Fastening Systems

#### Lateral Loading Path



## **System Modeling: 3D Model Analysis**



## **System Modeling: 3D Model Analysis**



### **System Modeling: Single-Tie Modeling**

#### Laboratory Test Validation



### **System Modeling: Single-Tie Modeling**

- Strain gauges are attached to the rail to measure vertical web strain
- Lateral loading is applied on rail web.







### **System Modeling: Single-Tie Modeling**

#### **Comparisons of strains**



### **System Model: Multiple-Tie Modeling**

- Track loading vehicle (TLV) applying vertical and lateral loads to the track structure in field
- The symmetric model including 5 ties





Detailed model with the fastening system

## Conclusions

- Some component models were validated with manufacturer data
- Single tie model was used to study bond-slip behavior of strands
- With the fastening system model, the loading path (vertical and lateral) can be identified
- Current laboratory tests were validated, and good agreement was observed
- Multiple tie models have been developed and ready to validate the track system models in field

### **Future Work**

- Further comparisons: More measurements on the lab testing set-ups will be deployed and compared with the models
- Large-scale modeling: Future model will include multiple ties and simplified the fastening system to consider the distribution of loading among multiple ties and the discrete support condition of rail
- Realistic loading: More load types (vertical, lateral, and longitudinal loads) and load forms (static and dynamic load) will be applied to the track system to better simulate the actual loading environment
- Parametric studies: Parametric studies about material properties and geometric dimensions will be conducted using the model



## **Acknowledgements**

- U.S. Department of Transportation
- Federal Railroad Administration
  - Funding for this research has been provided by the Federal Railroad Administration (FRA)
  - Industry Partnership and support has been provided by
    - Union Pacific (UP) Railroad
    - BNSF Railway
    - National Railway Passenger Corporation (Amtrak)
    - Amsted RPS / Amsted Rail, Inc.
    - GIC Ingeniería y Construcción
    - Hanson Professional Services, Inc.
    - CXT Concrete Ties, Inc., LB Foster Company
  - Professor Erol Tutumluer for assisting with ballast modeling. (UIUC)
  - Amsted RPS (Jose Mediavilla) and CXT Concrete Tie Inc. (Pelle Duong) for providing resources including engineering drawings, models, and other advice.

FRA Tie and Fastener BAA Industry Partners:



BUILDING AMERICA®













## **Questions?**



Assistant Professor, Bassem Andrawes

Department of Civil and Environmental Engineering University of Illinois, Urbana-Champaign Email: andrawes@illinois.edu