Effect of Lateral Load on Rail Seat Pressure Distributions

Joint Rail Conference Colorado Springs, CO 3 April 2014

Matthew J. Greve, J. Riley Edwards, Marcus S. Dersch, Ryan G. Kernes, and Christopher P.L. Barkan

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

U.S. Dep

U.S. Department of Transportation

Federal Railroad Administration

Outline

- RSD Background
- Pressure Distribution Relation to RSD
- Equipment Overview
- Field Data Analysis
 - Load Distribution Progression
 - Contact Areas vs. L/V
 - Rail Seat Load Sensitivity
 - Pressure Comparison
- Developing a New Design Metric
- Conclusions
- Future Work

FRA Tie and Fastener Research Program Overall Project Deliverables

Mechanistic Design Framework

Literature Review

Load Path Analysis

International Standards Current Industry Practices

AREMA Chapter 30

<u>I – TRACK</u>

Statistical Analysis from FEM

Free Body Diagram Analysis Probabilistic Loading

Finite Element Model

Laboratory Experimentation Field Experimentation Parametric Analyses

Current Objectives of Experimentation with Matrix Based Tactile Surface Sensors (MBTSS)

- Compare pressure distribution on rail seats:
 - Under various loading scenarios
 - Under various rail seat support conditions
 - Under various stages of rail seat wear
- Develop design metric for mechanistic evaluation of rail seat load distribution

Rail Seat Deterioration (RSD) Background

- Rail Seat Deterioration (RSD) is the degradation of concrete directly underneath the rail pad, resulting in track geometry problems
- Surveys conducted by UIUC report that North American Class I Railroads and other railway infrastructure experts ranked RSD as one of the most critical problems associated with concrete crosstie and fastening system performance
- Potential RSD mechanisms as determined through research at UIUC:
 - Abrasion
 - Crushing
 - Freeze-thaw
 - Hydraulic pressure cracking
 - Hydro-abrasive erosion

Equipment Preparation and Protection

- Sensors trimmed to fit rail seat
- BoPET and PTFE layered on each side of sensor to protect from shear and puncture damage
- Plastic sleeves and plastic bags to protect sensor tabs and handles from puncture and debris

Plan View of Sensor and Protective Layers

Field Experiment Program

- **Objective:** Analyze the distribution of forces through the fastening system and impact on components relative displacements
- Location: Transportation Technology Center (TTC) in Pueblo, CO
 - Railroad Test Track (RTT): tangent section with Safelok I fasteners
- Instrumentation:
 - MBTSS deployed to capture wheel load distribution, behavior of rail seats on the same crosstie, and effect of crosstie support conditions
 - Potentiometers to capture crosstie vertical displacement
- Loading: Track Loading Vehicle (TLV) used to apply static loads to the track structure
 - Modified railcar with instrumented wheelset on hydraulic actuators

May 2013 Field Instrumentation

MBTSS

- Crosstie Vertical Displacement Rods
 - **Rail Displacement Fixture**

Rail Longitudinal Displacement/Strains

Pad Assembly Longitudinal Displacement *****

Pad Assembly Lateral Displacement

Vertical Web Strains

Vertical and Lateral Circuits Shoulder Beam Insert (Lateral Force)

Crosstie Surface Strains

Embedment Gages, Vertical Circuit, **Clip Strains**

Slide 9

Slide 11

Increasing Pressure

Increasing Pressure

Increasing Pressure

Increasing Pressure

Increasing Pressure

Unloaded

Slide 17

Increasing Pressure

Slide 18

Increasing Pressure

TLV Varying Lateral Load at RTT

TLV Varying Lateral Load at RTT

Effect of L/V Force Ratio on Pressure

- Current design practice is to assume a uniformly distributed rail seat load, even under high L/V force ratios.
- Increased pressure changes abrasion characteristics
- Introduction of fines may concentrate load further causing local crushing

Concentration of Rail Seat Load

40,000 lb (178 kN) Vertical Load

Definition of Rail Seat Load Index (RSLI)

- A quantifiable design value which describes the sensitivity of the rail seat load distribution to changes in the L/V force ratio
- Rail Seat Load Index (RSLI) is defined as the percent of total rail seat load imparted onto a critical region of the rail seat, defined as the area of the rail seat not more than 1 inch (25.4 mm) from the field side shoulder, normalized to a theoretical, uniform distribution.

$$RSLI = \frac{\frac{[Load in Critical Area]}{[Total Rail Seat Load]}}{\frac{1}{6}} = 6 * \frac{[Load in Critical Area]}{[Total Rail Seat Load]}$$

Theoretical Optimized RSLI

Rail Seat Load Index

Excessive loading on field side of rail seat Accelerated fastener component wear Increased RSD potential

Optimal Design Zone

Excessive loading on gauge side of rail seat Accelerated fastener component wear Increased RSD potential

L/V Force Ratio

Effect of L/V on RSLI

Conclusions

- Rail seat load distribution is highly nonuniform, even between adjacent crossties
- Rail base rotation at "threshold" L/V force ratio can lead to significant load concentration on field side of rail seat
 - Loss of up to 54% of initial contact area
- The behavior of the load distribution under increasing L/V force ratios is affected by the magnitude of vertical load
- Average and maximum pressure are affected by reduction of contact area
 - 71% increase in average pressure
 - 98% increase in maximum pressure
- RSLI provides a mechanistic evaluation of rail seat load sensitivity
- Lateral force plays a significant role in RSD mechanisms because of its effect on contact area

Future Work

- How did crosstie support conditions affect wheel and rail seat load distributions in the field?
 - Can we understand the effect of crosstie support conditions by controlling undertie ballast stiffness?
- How are "threshold" L/V and vertical load related?
- Can we correlate load nonuniformity to RSD?
 - How does RSLI change with fastening system wear?
 - Can RSLI be correlated to RSD or specific RSD mechanisms?

Acknowledgements

Amsted

An Amsted Rail Company

U.S. Department of Transportation Federal Railroad Administration

- Funding for this research has been provided by the
 - Amsted RPS / Amsted Rail, Inc.
 - Federal Railroad Administration (FRA)
- Industry Partnership and support has been provided by
 - Union Pacific Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Amsted RPS / Amsted Rail, Inc.
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
 - TTX Company
- UIUC Zachary Ehlers, Doug Capuder, Marc Killion, and Timothy Prunkard

Hosting 2014 International Crosstie and Fastening System Symposium

- Co-organized by: AREMA Committee 30 (Ties), Railway Tie Association (RTA)
- Three day conference with presentations, discussions, and a technical tour
- Focus → state of the art in timber, concrete, and composite crosstie and fastening system design, performance, research, modeling, and inspection
- 3 5 June 2014 Sessions on UIUC campus
 4 June 2014 Technical tour to UIUC
 Research and Innovation Laboratory (RaIL)
 and voestalpine Nortrak facility in Decatur, IL
- Strong domestic and international participation; addressing topics including:
 - Laboratory and Field Testing
 - Component and System Modeling
 - Automated Inspection Technologies

205 N. Mathews Avenue Urbana. IL 61801

Questions & Comments

Matthew Greve Graduate Research Assistant greve1@illinois.edu