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ABSTRACT 28 
In North America, many design guidelines for track components in shared-use railway infrastructure use 29 
historical wheel loads that may not necessarily be representative of those seen on rail networks today.  30 
Without a clear understanding of the nature of these loads, it is impossible to adequately evaluate the 31 
superstructure to make design improvements.  Therefore, researchers at the University of Illinois at 32 
Urbana-Champaign (UIUC) are conducting research to lay the groundwork for an improved and thorough 33 
understanding of the loading environment entering the track structure.  Wheel impact load detectors 34 
(WILDs) have been used in North America for decades to identify bad-acting wheels that could damage 35 
the rail infrastructure or result in a rolling stock failure.  Information regarding loads obtained from the 36 
WILD can be used to identify trends that not only provide a clearer picture of the existing loading 37 
environment created by widely varied traffic characteristics, but can be used in future design and 38 
maintenance planning of infrastructure according to the anticipated traffic.  This paper will discuss the 39 
current trends in wheel loads across the North American rail network while investigating the effects of 40 
speed and other sources of load variability.  In addition to WILD data, instrumented wheel set (IWS) data 41 
have also been used to gain insight into loading conditions, and preliminary analyses of these data are 42 
included.  Ultimately this work will lead to useful distinctions of loads for improved design 43 
methodologies that are specific to the intended type of traffic traversing a given route or network. 44 

45 
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INTRODUCTION 46 
Elements of the track superstructure in North America have historically been designed through a process 47 
that is generally based on practical experience, without a complete understanding of the loading 48 
environment causing particular failure mechanisms (1).  Improvements in the design process for track 49 
superstructure components may result in a more robust track structure if the loading environment can be 50 
adequately characterized. 51 

The North American operating environment differs from that found throughout much of the rest 52 
of the world due to the prominence of heavy axle load rail freight transportation and shared infrastructure 53 
between heavy axle load freight and intercity passenger rail traffic.  One of the challenges created by this 54 
operating environment is the design of critical infrastructure components under a widely varied loading 55 
spectrum. 56 

To best determine how to describe the loads entering the track structure, one must explore 57 
possible causes of variation.  This paper will use data, primarily from wheel impact load detectors 58 
(WILD), to identify sources of variation in the loading regime entering the track structure and test several 59 
hypotheses aimed at understanding trends between some of the most critical parameters.  These 60 
hypotheses are that (a) the static load is the most reliable indicator of wheel load, (b) increased speed 61 
causes increased wheel loads, (c) conditions prevalent in the winter months result in higher wheel loads, 62 
and (d) site-based traffic composition has a significant influence on the distribution of loads at the wheel-63 
rail interface.  Instrumented wheel set (IWS) data will be used to explore the effect of curvature and cant 64 
deficiency on wheel load magnitudes.  More thorough understanding of these relationships will lead to 65 
improved design effectiveness of critical infrastructure components. 66 
 67 
METHODOLOGIES AND MEASUREMENT TECHNOLOGIES 68 
There are several load quantification technologies, systems, and instrumentation strategies available to the 69 
rail industry for quantifying the performance of vehicles and track.  Specifically, instrumented wheel sets 70 
(IWS) and wheel impact load detectors (WILD) monitor forces at the wheel-rail interface.  These systems 71 
are used to monitor rolling stock performance and assess wheel and vehicle health, producing efficiencies 72 
in both predictive and reactive maintenance strategies.  However, they can also be used by railway 73 
infrastructure engineers to provide insight into the magnitude and distribution of loads entering the track 74 
structure.  A clear understanding of this loading spectrum provides a foundation for the analysis and 75 
design of critical infrastructure components. 76 
 77 
Instrumented Wheel Set 78 
The IWS is a wheel set that is instrumented with strain gauges on the axle and wheel.  It can be deployed 79 
on any type of vehicle and provides information related to vertical, lateral, and tangential forces created 80 
by the wheel set, as well as the contact patch location on the head of the rail.  The IWS measures 81 
numerous data channels at high frequencies (300 Hz) which, through the use of GPS referencing, can be 82 
combined with other measured and recorded track data (e.g. track geometry, curvature, grade, type of 83 
track structure, track stiffness).  While the IWS data is primarily used to evaluate rolling stock component 84 
and system performance, it can also be used to determine that magnitude of the forces being imparted to 85 
the track.  In the future, UIUC will further utilize IWS data from the Association of American Railroads 86 
(AAR) and TTX Company to provide insight into the effects of these track parameters on forces 87 
experienced at the wheel-rail interface. 88 
 89 
Wheel Impact Load Detector 90 
A WILD consists of strain gauges mounted on the rail over a series of cribs that measure vertical rail 91 
deflection to calculate wheel loads.  The WILD site is over 50 feet in length, with crossties instrumented 92 
at various intervals to capture a single wheel’s rotation five times, recording peak (impact) forces and 93 
average forces (2) by collecting data at 25 kHz.  Using an algorithm that analyzes variability along the 94 
site, these average, or nominal, forces are filtered from the peak loads to obtain an estimate of static wheel 95 
load.  The peak wheel load is simply the highest recorded measurement from the strain gauges along the 96 
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length of the detector.  While the WILD has traditionally been used by infrastructure and rolling stock 97 
owners to detect and identify poorly-performing wheels, it has also been proven to be a practical 98 
mechanism for producing reliable wheel load data, according to a study performed by the AAR in which 99 
they reviewed the variation of measurements produced by the detector (3). 100 

WILD sites are constructed on tangent track with concrete crossties, typically with premium 101 
ballast, and well-compacted subgrade (possibly with hot mix asphalt underlayment) to reduce sources of 102 
load variation within the track structure due to track geometry and support condition irregularities.  103 
Although loads experienced in other locations on the network may have higher magnitudes due to track 104 
geometry and support deviations, these data still provide representative loading information for networks 105 
throughout North America (4). 106 

Because WILDs are implemented to detect poorly-performing wheels and are, therefore, only 107 
located on tangent track where lateral to vertical load ratios (L/V) are typically much lower, the 108 
information regarding lateral loads may not be as useful as compared to data collected on curved track.  109 
Therefore, much of the analysis shown in this paper is derived from vertical loading data.  Other 110 
measurement technologies may be useful for gathering loading data related to additional objectives.  It is 111 
the intent of the UIUC research team to further develop our understanding of lateral loads through the use 112 
of other technologies, such as the IWS and Truck Performance Detector (TPD). 113 
 114 
SHARED USE LOADING ENVIRONMENT IN NORTH AMERICA 115 
The railroad operating and loading environment in North America is increasingly made up of shared 116 
corridors as expanded and improved passenger rail service is added to the existing freight network.  117 
Changes in freight railroad infrastructure, rolling stock, and operating practices involving the 118 
accommodation of passenger service have introduced many challenges (5).  One of these challenges is the 119 
design and performance of critical infrastructure components.  Because of the diverse nature of the wheel 120 
loads and speeds on shared-use infrastructure, designing components within the track structure requires 121 
significant analysis.  Most design decisions cannot be made without gaining a quantitative understanding 122 
of the entire load spectrum.  Recent industry trends show an improving trend in terms of less severe wheel 123 
loads, but a more thorough analysis will provide additional insight into the nature of these loads 124 
(unpublished data; Mike Brown).  To better understand the loads applied to the infrastructure, UIUC has 125 
acquired WILD data from Amtrak’s Northeast Corridor (a shared corridor in operation for many decades) 126 
and the Union Pacific Railroad (UPRR) (Figure 1).  Figure 2 illustrates how loads can vary on shared use 127 
infrastructure, even within particular vehicle types. 128 
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 129 
FIGURE 1  WILD data provided to UIUC by Amtrak and UPRR. 130 

 131 

  Amtrak WILD Site 

  UPRR WILD Site 
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 132 
FIGURE 2  Percent exceeding particular peak vertical loads on Amtrak at  133 
Edgewood, Maryland (WILD data from November 2010) (1 kip = 4.45 kN). 134 

Tables 1 and 2 provide tabular depictions of the static and peak load spectrums that represent the 135 
diverse rolling stock composition in North America.  For the purposes of this summary and any following 136 
figures that reference them, “unloaded freight cars” include any non-intermodal freight car whose 137 
nominal wheel load is 15 kips or less. 138 

Some statistical testing was performed to determine if one month was representative of the entire 139 
population of wheel loading.  A series of Kolmogorov-Smirnov tests were performed to compare wheel 140 
load data from multiple months.  When the entire data set was used (greater than 140,000 wheels per 141 
month), there was a statistically significant difference in months because the sample size effectively 142 
captured the entire population.  When the sample size was reduced to about 2,000 random wheels per 143 
month (which still provided an adequate representation of the data), the month-to-month variation was not 144 
statistically significant.  Therefore, one month’s worth of data can be used to make broader 145 
generalizations of the wheel load data.  146 
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TABLE 1  Distribution of Static Wheel Loads (1 kip = 4.45 kN) (Freight data: UPRR; Gothenburg, 147 
Nebraska; January 2010.  Passenger data: Amtrak; Edgewood, Maryland, Hook, Pennsylvania, and 148 
Mansfield, Massachusetts; November 2010.) 149 

  Nominal Load (kips) 

Car Type Mean 10% 50% 75% 90% 95% 97.5% 99.5% 100% 

Unloaded Freight Car 6.6 5.2 6.2 7.2 8.5 9.6 11.0 13.6 15.0 

Loaded Freight Car 33.4 24.3 34.8 37.1 38.7 39.5 40.2 41.4 45.5 

Intermodal Freight Car 20.5 10.4 18.8 26.8 32.9 35.3 36.8 39.8 50.6 

Freight Locomotive 33.6 31.4 33.6 34.8 35.9 36.6 37.2 38.5 43.5 

Passenger Locomotive 27.0 23.3 26.1 28.4 33.5 35.8 37.2 39.3 42.6 

Passenger Coach 15.0 12.7 14.7 16.4 17.7 18.3 19.0 20.1 45.4 

TABLE 2  Distribution of Peak Wheel Loads (1 kip = 4.45 kN) (Freight data: UPRR; Gothenburg, Nebraska; 150 
January 2010.  Passenger data: Amtrak; Edgewood, Maryland, Hook, Pennsylvania, and Mansfield, 151 
Massachusetts; November 2010.) 152 

  Peak Load (kips) 

Car Type Mean 10% 50% 75% 90% 95% 97.5% 99.5% 100% 

Unloaded Freight Car 10.8 7.4 9.2 11.2 15.8 20.5 26.4 39.7 100.8 

Loaded Freight Car 42.3 32.6 42.3 45.6 49.8 56.2 65.3 84.7 156.6 

Intermodal Freight Car 27.5 15.2 24.8 34.6 41.9 46.8 54.3 74.8 141.9 

Freight Locomotive 42.8 36.9 41.6 45.3 50.1 53.9 57.5 68.8 109.6 

Passenger Locomotive 38.1 31.1 36.7 41.5 46.4 50.0 53.6 63.4 94.0 

Passenger Coach 23.2 17.5 21.7 25.0 30.2 35.3 42.9 58.5 108.8 

  153 
SOURCES OF LOAD VARIATION 154 
Wheel loads vary due to many causes, including, but not limited to, static load, speed, temperature, 155 
location, position within the train, vehicle characteristics, track geometry and quality, curvature, and 156 
grade.  Because WILDs are constructed on tangent track, and they are dispersed throughout the United 157 
States, they are able to capture many of these sources of variation. 158 
 159 
Static Wheel Load 160 
The nominal (static) wheel load is the best indicator of the load expected to enter into the track structure 161 
and is highly dependent on the type of vehicle passing over the WILD.  Vehicles with higher nominal 162 
wheel loads produce higher peak wheel loads, as shown in Figure 3.  Density contours are displayed to 163 
show areas of high data concentration.  The wide distribution beyond the most highly concentrated data, 164 
however, suggests that there are other factors affecting the peak load entering the track structure. 165 
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 166 
FIGURE 3  Effect of car type on peak load on Amtrak at Edgewood, Maryland 167 

(WILD data from November 2010) (1 kip = 4.45 kN). 168 

Speed 169 
Field observations suggest that loads at the wheel-rail interface produced by moving loads are greater 170 
than those produced by the same wheel loads at rest (6).  Specifically, dynamic loads can be produced by 171 
roll, slip, lurch, shock, buff, torque, load transfer, vibration, and unequal distribution of lading within the 172 
rolling stock (7).  Generally, dynamic and impact forces can be caused by imperfections in the moving 173 
vehicles (as listed above), track geometry irregularities, and variations in track stiffness (6).  However, the 174 
relationship between speed and total vertical load is not easily quantified or characterized.  As shown in 175 
Figure 4, the majority of the peak vertical wheel loads exhibit minimal increases with increased speed.  176 
Figure 5 shows a similar relationship with much higher maximum speeds.  This increase may simply be 177 
due to dynamic interaction between the naturally-oscillating vehicles and the track (8). 178 
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  179 
FIGURE 4  Effect of speed on peak load on UPRR at Gothenburg, Nebraska 180 

(WILD data from January 2010) (1 kip = 4.45 kN, 1 mph = 1.609 kph). 181 
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 182 
FIGURE 5  Effect of speed on peak load on Amtrak at Edgewood, Maryland 183 

(Passenger WILD data from November 2010) (1 kip = 4.45 kN, 1 mph = 1.609 kph). 184 

WILD Site Location 185 
The location of the WILD site provides another very significant source of variation in loads.  Each site 186 
sees different distributions of car types and operating speeds.  These varied traffic characteristics often 187 
produce widely varied loads at the wheel-rail interface.  To illustrate this, Figure 6 compares non-188 
intermodal freight traffic at Martin Bay, NE (where 99% of all wheels exceed 30 kips) with that at Elton, 189 
LA (where only 48% of all wheels exceed 30 kips).  Figure 6 also illustrates the different load magnitudes 190 
associated with loaded and unloaded freight cars, indicated by the steepest portions of the Elton curve.  It 191 
appears as if only loaded freight cars pass the Martin Bay WILD, causing significant deviation from a 192 
distribution that includes unloaded cars as well. 193 
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 194 
FIGURE 6  Variation of peak vertical loads between Martin Bay, Nebraska and Elton, Louisiana 195 

(non-intermodal freight car WILD data from January 2010) (1 kip = 4.45 kN). 196 

The variation depicted in Figure 6 is to be expected, as these two WILD sites are in different 197 
regions of the country and have vastly different traffic compositions.  However, WILD sites in the same 198 
region on infrastructure owned by one railroad can also exhibit significant differences in loading.  Figure 199 
7 illustrates passenger coach wheel loads from four sites along Amtrak’s Northeast Corridor.  While each 200 
distribution represents passenger coaches, there are multiple types of passenger coaches at each site, 201 
adding further variation within traffic type.  Each site experiences commuter service (with different types 202 
of equipment) and Amtrak regional service and Mansfield (150 mph (241 kph)), Edgewood (135 mph 203 
(217 kph)), and Hook (110 mph (177 kph)) experience Acela Express service.  Each of these operating 204 
services uses different types of equipment, resulting in significant variability even within a particular 205 
traffic type (i.e. passenger coaches).  As shown in the figure, just 5% of the peak wheel loads captured at 206 
Hook exceed 25 kips, while almost 57% of the wheels passing over the Mansfield site produce peak loads 207 
in excess of 25 kips.  The compositions of passenger traffic at these two sites are similar, yet there are 208 
evidently other sources of variability affecting the distribution of peak wheel loads. 209 
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 210 
FIGURE 7  Variation of peak vertical loads along Amtrak’s Northeast Corridor 211 

 (passenger car WILD data from April 2011) (1 kip = 4.45 kN). 212 

Month within the Year 213 
While it has already been shown that there is variability across sites due to varying traffic characteristics, 214 
there also exists seasonal variability in loading at a single site.  According to Kerr, when the track 215 
substructure is frozen, it becomes stiffer and causes higher loads at the wheel-rail interface (6).  The 216 
condition of the wheel may also deteriorate during the winter months due to a harsher braking 217 
environment.  In fact, certain conditions, including frozen ballast and subgrade, can result in up to a nine-218 
fold increase in track stiffness from freshly-tamped track (6).  Cold weather can also stiffen various 219 
damping components within the carbody (9) and perhaps the track superstructure, further increasing the 220 
wheel load.  One would then expect significant variability in loads according to seasonal changes.  In fact, 221 
UPRR has collected WILD data showing a clear increase in the number of severe impacts during the 222 
winter months on its network (10). 223 

Generally, month-to-month variability at a particular site is actually quite minimal.  A brief 224 
review of the static loads collected during multiple months indicates that the rolling stock traveling over 225 
the WILD sites remains relatively constant regardless of the month.  Compared to other sites and other 226 
years within the data provided by UPRR, Figure 8 depicts relatively large month-to-month variability in 227 
peak loads experienced at the Gothenburg, Nebraska WILD site.  However, the loads do not follow the 228 
expected trend (higher wheel loads during the colder months) according to monthly temperature 229 
fluctuations at a location that sees significant seasonal temperature variation.  Therefore, there doesn’t 230 
appear to be enough evidence to conclude that seasonal variations affect the general shape of the wheel 231 
load distribution. 232 
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 233 
FIGURE 8  Monthly variation of peak vertical loads on UPRR at Gothenburg, Nebraska  234 

(non-intermodal freight car WILD data from 2010) (1 kip = 4.45 kN). 235 

 However, focusing on the highest loads provides some clarity regarding the most severe impacts, 236 
as shown in Figure 9.  The highest 0.1% of peak vertical loads in January is higher than the most severe 237 
impact loads recorded during the warmer months.  This observation is consistent across both operators 238 
(Amtrak and UPRR) and multiple WILD sites (locations where significant seasonal temperature 239 
fluctuations would occur), confirming the hypothesis that the stiffer track structure (higher track modulus) 240 
resulting from colder temperatures does not attenuate the high impact loads as well as a more flexible 241 
track structure (lower track modulus). 242 
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 243 
FIGURE 9  Monthly variation of highest peak vertical loads on UPRR at Gothenburg, Nebraska 244 

 (non-intermodal freight car WILD data from 2010) (1 kip = 4.45 kN). 245 

Wheel Irregularities 246 
Perhaps the greatest contributor to increases in loads entering the track structure as detected by the WILD 247 
is the condition of the wheel.  Irregularities on the wheel can result in impacts that severely damage the 248 
rail and other components of the track structure.  For instance, a 100-kip impact resulting from a flat 249 
wheel can increase the contact stress in the rail by up to 200% (10).  Therefore, variability in the quality 250 
of wheels traveling over the infrastructure creates significant variation in the loads entering that structure.  251 
Figure 10 shows peak wheel load as a function of speed for passenger coach data on Amtrak’s Northeast 252 
Corridor.  The significant number of wheel loads exceeding 50 kips at roughly half the maximum speed 253 
suggests a high volume of poorly-performing wheels travelling over this WILD site.  These wheels are 254 
imparting loads up to six times their static load into the track structure, increasing the potential for 255 
damage to the rail and other track components.  The condition of these wheels may contribute to the site-256 
specific diversity as shown in Figure 7. 257 
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 258 
FIGURE 10  Effect of wheel condition on peak vertical load on Amtrak at Mansfield, Massachusetts 259 

(passenger WILD data from November 2010) (1 kip = 4.45 kN, 1 mph = 1.609 kph). 260 

Other Sources of Variability 261 
Because the WILD is installed on high-quality tangent track, the effect of wheel position within the truck, 262 
car, or train may not be fully realized.  It is well understood, though, that the leading axle of any particular 263 
truck will create the highest lateral loads within a curve (11).  In distributed power applications with 264 
curvature and gradients, there is also significant variation along the length of the train in lateral and 265 
longitudinal wheel loads (12).  In the future, the UIUC research team will further test this hypothesis 266 
using both WILD and IWS data to determine what effect, if any, the axle’s position within the rolling 267 
stock has on the loading environment. 268 

The effect of curvature and grade are also not clear from WILD data due to the detector’s 269 
characteristics.  Curvature significantly affects the lateral loads applied by the wheel and, along with 270 
gradients, can also cause variation in vertical loads (Figure 11). 271 
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 272 
FIGURE 11  Vertical and lateral wheel loads in a left-handed curve on UPRR 273 

(IWS data from March 2006) (1 kip = 4.45 kN). 274 

 As shown in Figure 11, the vertical load created by the outside wheel increases during the curve, 275 
while the vertical load from the inside wheel decreases in the curve section.  Furthermore, the lateral 276 
loads from both wheels increase significantly in the curved portion of the track when compared to the 277 
tangent sections.  However, the lateral load decreases throughout the duration of the curve because the 278 
train is slowing down as it travels through the curve.  To better understand the effect of speed on the 279 
lateral wheel loads in a curve, the degree of curvature and superelevation must be considered.  Cant 280 
deficiency, which is the difference between equilibrium superelevation and actual superelevation in a 281 
curve (11), considers degree of curvature, curve superelevation, and vehicle speed and can be expressed 282 
as follows: 283 

ℎ𝑑 =
2𝑏0
𝑔

(
𝑣2

1746.40/𝐷
) − ℎ𝑡 284 

where, hd = cant deficiency (mm) 285 
 2b0 = distance between contact patches on a wheel set (assumed 1500 mm) 286 
 g = acceleration due to gravity (9.81 m/s2) 287 
 v = vehicle speed (m/s) 288 
 D = degree of curvature 289 
 ht = actual superelevation of curve (mm) 290 
Relating lateral wheel load magnitudes to cant deficiency allows different curves with different balance 291 
speeds to be more effectively compared.  Figure 12 shows the relationship between cant deficiency and 292 
lateral wheel loads on the same left-handed curve illustrated in Figure 11. 293 

CURVE 
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 294 
FIGURE 12  Effect of cant deficiency on lateral loads in curved track on UPRR 295 

(IWS data from March 2006) (1 in = 25.4 mm, 1 kip = 4.45 kN). 296 

 Because the instrumented wheel set is installed on a standard, relatively stiff truck, the lateral 297 
forces from both wheels increase with increased cant deficiency (a function of increased speed).  The rate 298 
at which the right (outer) wheel increases is higher partially due to increased centrifugal forces at higher 299 
speeds, but mostly due to higher angle of attack (yaw angle).  In the future, UIUC will utilize truck 300 
performance detector (TPD, a wayside device the utilizes strain gauges to measure vertical and lateral 301 
forces on the low and high rail at a field location that has two reverse curves to evaluate the curving 302 
performance of the truck and vehicle (13,14)) data to explore the relationship between angle of attack and 303 
the magnitude of lateral loads entering the rail in curved track. 304 
 305 
CONCLUSIONS 306 
The data collected at the Amtrak and UPRR WILD sites provide unique insight into the loading trends of 307 
the rolling stock travelling over each of these networks.  Specifically, these data provide insight on 308 
primarily passenger operations, primarily freight operations, and true shared-use operations.  Therefore 309 
the following conclusions can be roughly applied for each of these situations across North America: 310 

 The WILD is a useful tool for collecting and analyzing data about loads entering the track 311 
structure 312 
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 Vehicle type and its associated static load provides a baseline for the expected total load at the 313 
wheel-rail interface 314 

 Increasing speed minimally increases the most common wheel loads; however, severe impact 315 
loads become much more severe at higher speeds 316 

 Traffic composition and other site-specific parameters play a significant role in the distribution of 317 
the loading environment 318 

 Seasonal effects in load variation, while greatly contributing to the magnitude of severe impacts, 319 
minimally affect the majority of the wheel load distribution 320 

 Wheel condition is a significant factor in determining peak loads entering the track structure 321 
 Lateral loads on both rails increase with increased cant deficiency on curved track 322 

Identifying the sources of wheel load variation, as well as determining relationships between parameters 323 
that incorporate multiple data collection methods, will more accurately capture the loading environment.  324 
This will lead to improvements in design and performance of critical infrastructure components and the 325 
entire track structure. 326 
 327 
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