Investigation of Feasible Methods to Mitigate Rail End Bolt-Hole Cracks Using Finite Element Analysis

2015 Joint Rail Conference (JRC)
San Jose, CA
25 March 2015
Kaijun (Kevin) Zhu, Riley Edwards, Yu Qian, Marcus Dersch, and Bassem Andrawes
Presentation Outline

• Background and Problem Statement
• Purpose and Scope of Work
• Literature Review Summary
• Static Finite Element (FE) Modeling
• Preliminary Static FE Results
• Future Work and Path Forward
Background and Problem Statement

- Rail joints classification:
 - Insulated Joints
 - Bonded
 - Nonbonded
 - Bolted Joints
 - Compromise
 - Standard

- Common defects:
 - End Batter
 - Head-Web Separation
 - Joint Bar Center Crack
 - Bolt-Hole Crack

(The pictures are from CEE 409 Railroad Track Engineering, Learning Module 4. University of Illinois.)
Investigation of Methods to Mitigate Rail End Bolt-Hole Cracks Using FEA

Background and Problem Statement

- The primary cause of rail joint defects is the **discontinuity of both geometry and mechanical properties**, and the resulting impact loads.

- Bolt-hole cracks at rail joint propagating in the rail longitudinal direction is a major hazard, causing rail break or even loss of rail running surface.

- Most cracks are found to propagate from the first bolt-hole at the end of the rail toward the end of the rail section.

(The picture is from Wen et al. (2005), *Contact-impact stress analysis of rail joint region using the dynamic finite element method*)
Purpose and Scope of Work

• A large number of bolted rail joints still exist in North America rail infrastructure for a variety of reasons, especially in some early-built rail transit systems.

• Scope → to find feasible method(s) to solve or mitigate the bolt-hole crack problem.

• **Phase I** – Literature Review and Finite Element Modeling

• **Phase II** – Laboratory Experimentation
Literature Review Summary – Key Findings

- Bolt-hole cracks typically initiate at receiving rail end of the joint, at approximately 45° to the neutral axis of rail;
- For the standard joints between continuously welded rail (CWR) strings, thermal-induced longitudinal stresses play a significant role causing the crack;
- For the standard joints among bolted-joint rail (BJR) track, the crack driving force could be represented by the positive shear stress at the bolt-hole.
Possible Causes

Joint Anomaly
- Gap
- Height Mismatch

Wheel Impact Load
- Dynamic Load

Possible Failure Modes
- Bolt Hole Cracks
- Bent or Broken Bolts
- Cracked or Broken Bars

Increased Deflection/Geometry Defect

Rail End Batter

Deteriorated Support

Loosened Bolts

(The picture is from Carolan et al. (2014), Engineering studies on joint bar integrity, part II: finite element analyses)
Existing Remedial Methods – Cold Expansion

- Apply cold expansion to the bolt-hole, by pulling an oversize tapered mandrel through it.
- The residual compressive stress could help lower the cyclic tensile stress around the hole.
- The reduced net stress help increase the fatigue life.

(Schematic of the Cold Expansion Process using Hydraulic Puller)

(Increase in Fatigue Life for Cold vs. Non-Cold Expanded Holes)

(The picture is from Reid (1993), Beneficial residual stresses at bolt holes by cold expansion)
Existing Remedial Methods – Saddled Joints

- Install “saddle” to protect and support joint bar.
- Saddled joint has better mechanical properties.

A Newer Joint Design with Web-Hugging Bars and Saddle

Stresses in Standard and Newer Joints

(The picture is from Igwemezie, J. and Nguyen, A.T. (2010), Anatomy of joint bar failures III)
Static FE Model Steps

Step 1 – Develop models for nominal and worst scenario cases;

Step 2 – Develop models of standard joints to study the influences of possible bolt-hole crack causes;

Step 3 – Develop models of remedial joint designs, compare the results with models of standard joints to see the effectiveness.
Static FE Model Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail Section</td>
<td>100-lb / 115-lb</td>
</tr>
<tr>
<td>Plate Type (Track Stiffness)</td>
<td>Resilient Plates (4,000 psi) / Pandrol Plates (Old) (11,000 psi) / Pandrol Plates (New) (22,000 psi)</td>
</tr>
<tr>
<td>Joint Support Type</td>
<td>Suspended / Supported</td>
</tr>
<tr>
<td>Support Condition</td>
<td>Well (100%) / Poorly (≈0%)</td>
</tr>
<tr>
<td>Bolt Condition</td>
<td>Tight (22,000 psi) / Loose (6,000 psi)</td>
</tr>
<tr>
<td>Static Wheel Load</td>
<td>16,500 lb / wheel</td>
</tr>
<tr>
<td>Impact Wheel Load Factor</td>
<td>$I_m \geq 1.33$</td>
</tr>
<tr>
<td>Loading Position</td>
<td>a (on top of rail end) / b (between a and c) / c (on top of first bolt-hole)</td>
</tr>
</tbody>
</table>
Static FE Model Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail Section</td>
<td>100-lb / 115-lb</td>
</tr>
<tr>
<td>Plate Type (Track Stiffness)</td>
<td>Resilient Plates (4,000 psi) /</td>
</tr>
<tr>
<td></td>
<td>Pandrol Plates (Old) (11,000 psi) /</td>
</tr>
<tr>
<td></td>
<td>Pandrol Plates (New) (22,000 psi)</td>
</tr>
<tr>
<td>Joint Support Type</td>
<td>Suspended / Supported</td>
</tr>
<tr>
<td>Support Condition</td>
<td>Well (100%) / Poorly (≈0%)</td>
</tr>
<tr>
<td>Bolt Condition</td>
<td>Tight (22,000 psi) / Loose (6,000 psi)</td>
</tr>
<tr>
<td>Static Wheel Load</td>
<td>16,500 lb / wheel</td>
</tr>
<tr>
<td>Impact Wheel Load Factor</td>
<td>1.33</td>
</tr>
<tr>
<td>Loading Position</td>
<td>a (on top of rail end)</td>
</tr>
</tbody>
</table>

![Diagram with labels](image)
Investigation of Methods to Mitigate Rail End Bolt-Hole Cracks Using FEA

I – Well-supported ties, Tight bolts, $l_m=1.33$

$P_w = 22,000$ lb

$P_w = Impact\ Wheel\ Load = 1.33 \times 16500 = 22,000$ lb

$P_b = Bolt\ Preload = 22,000$ lb / bolt

$K = Track\ Modulus \times Tie\ Spacing = 4,000$ psi $\times 22.5$ in $= 90,000$ lb/in

$K = 90,000$ lb/in

$K = 90,000$ lb/in

$K = 90,000$ lb/in

$K = 90,000$ lb/in

Max. Principal Stress around Rail End Bolt-Hole

<table>
<thead>
<tr>
<th></th>
<th>Magnitude (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension (T)</td>
<td>177,000</td>
</tr>
<tr>
<td>Compression (C)</td>
<td>115,000</td>
</tr>
<tr>
<td></td>
<td>52,000~69,000</td>
</tr>
</tbody>
</table>

Note:
1. Tensile and Yield Strengths are provided by sponsor;
2. Fatigue Strength is estimated by 45~60% of Yield Strength

$\approx 12,000$ psi (23% Fatigue Strength)
Static FE Models and Results

II – Poorly-supported tie, Loose bolts, $I_m = 3.0$

$P_w = 50,000$ lb

$P_b = 6,000$ lb

$K=90,000$ lb/in

$K=90,000$ lb/in

$K=1,000$ lb/in

$K=90,000$ lb/in

$P_w = \text{Impact Wheel Load} = 3.0 \times 16500 = 50,000$ lb

$P_b = \text{Bolt Preload} = 6,000$ lb / bolt

<table>
<thead>
<tr>
<th>Load Position</th>
<th>Max. Tensile Stress around 1st Rail End Bolt-Hole (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>19,330</td>
</tr>
<tr>
<td>b</td>
<td>27,460</td>
</tr>
<tr>
<td>c</td>
<td>40,560</td>
</tr>
</tbody>
</table>
Static FE Models and Results

II – Poorly-supported tie, Loose bolts, $l_m=3.0$, (case c)

S, Max. Principal (Abs)
(Avg: 75%)

-4.056e+04
-3.434e+04
-2.813e+04
-2.191e+04
-1.569e+04
+9.471e+03
+3.253e+03
-2.966e+03
-9.184e+03
-1.540e+04
-2.162e+04
-2.784e+04
-3.406e+04

≈ 41,000 psi
(79% Fatigue Strength)

(The picture is from Wen et al. (2005), Contact-impact stress analysis of rail joint region using the dynamic finite element method)
Investigation of Methods to Mitigate Rail End Bolt-Hole Cracks Using FEA

Preliminary Static FE Model Results

- When the rail joint system is in good condition (i.e. well-supported ties, tight bolts, and low impact wheel loads), **the stresses around the rail end bolt-hole are well below the fatigue strength (23%)**;
- When the rail joint system is deteriorated (e.g. poorly-supported tie, loosened bolts, and high impact wheel loads), **the stresses around the rail end bolt-hole can approach the fatigue strength (79%)**;
- The critical case is when the wheel load is right above the rail end bolt-hole;
- As supported by other literature, the maximum tensile stress regions are at approximately **45°** around rail end bolt-hole.
Future Work and Path Forward

- **Refine the mesh** around the bolt-hole of interest, and **perform the mesh sensitivity analysis** to approach the convergence value of the stresses;

- **Extend the model in longitudinal direction** and import additional crossties along the rail base to reduce boundary effect in simulation, and better represent field conditions;

- **Compare the influences of poorly-supported crosstie**, loose bolts and high impact load, respectively, and find out the dominant one(s);

- **Develop dynamic model** for fatigue analysis via introducing moving wheel(s) into the model.
Acknowledgements

- Funding for this research has been provided by:
 - National University Rail (NURail) Center
- For assistance with research
 - Tony Cabrera (NYCT)
 - Michael Yang (UIUC)
 - Prof. Don Uzarski (UIUC Retired)
 - Michael Carolan (Volpe National Trans. Center)
Contact Information

Kaijun (Kevin) Zhu
Graduate Research Assistant
e-mail: kzhu12@illinois.edu

Riley Edwards
Senior Lecturer and Research Scientist
e-mail: jedward2@illinois.edu

Yu Qian
Research Engineer
e-mail: yuqian1@illinois.edu

Marcus Dersch
Senior Research Engineer
e-mail: mdersch2@illinois.edu

Bassem Andrawes
Associate Professor
e-mail: andrawes@illinois.edu