Quantification of Lateral Forces in Concrete Crosstie Fastening Systems

Transportation Research Board 94th Annual Meeting

Washington D.C.

13 January 2015

Brent Williams, Donovan Holder, Marcus Dersch, Riley Edwards, and Christopher Barkan

U.S. Department of Transportation Federal Railroad Administration

Outline

- Research Motivation
- Defining Lateral Load Path and Fastening System
- Field Experimental Setup TTC
 - Dynamic Transfer of Lateral Loads
- Laboratory Experimental Setup TLS
 - Demand on Shoulder Varying Static Vertical Load
 - Quantifying Lateral Load
 Distribution Varying Friction
- Conclusions
- Future Work

Current Performance Challenges Relating to Lateral Loads

 Lateral forces through fastening system is believed to be a contributor to shoulder and insulator deterioration

Purpose of Lateral Force Measurement

- Quantify lateral loading conditions to aid in the mechanistic design of fastening systems
- Understand demands on fastening system components under loading conditions known to generate failures
- Gain understanding of the lateral load path by:
 - Quantifying forces and stresses acting on the insulator and shoulder
 - Quantifying the distribution of lateral forces in fastening system
 - e.g. **Bearing** on shoulder, **frictional resistance** from rail pad assembly or clip, etc.
 - Understanding the causes of variation on lateral load distribution among adjacent crossties

Defining the Lateral Load Path

Measurement Technology Lateral Load Evaluation Device (LLED)

- Replaces original face of cast shoulder
- Maintains original fastening system geometry
- Designed as a beam in four-point bending
- Bending strain is resolved into force through calibration curves generated in the lab

Field Experimental Setup - TTC

- **Objective:** Analyze the distribution of forces through the fastening system and impact on the relative displacement of components
- Location: Transportation Technology Center (TTC) in Pueblo, CO
 - Railroad Test Track (RTT): tangent section
 - High Tonnage Loop (HTL): curved section

Instrumentation:

- Strain gauges
- LLED
- Potentiometers

Dynamic Loading Environment

- Customized freight train
 - Three six-axle locomotives
 - Ten freight cars with 263k, 286k, and 315k cars
 - Speeds of 2 mph,15 mph,
 30 mph, 40 mph, and 45 mph
- FAST train
 - Speeds of 20 40 mph
- Tested on HTL (curved section)

Dynamic Transfer of Lateral Loads: Freight Train - Measured at Shoulder

- Peak LLED and lateral wheel loads from each passing freight wheel
- Dynamic loads are applied at much higher rates than static
- Higher bearing forces may be caused by lowered COFs

Dynamic Transfer of Lateral Loads: Freight Train - Measured at Shoulder

- Absolute LLED values recorded throughout each pass of the FAST train
- Data recorded during varying speeds:
 - -20 40 mph
- Large variability in forces on the shoulder at higher lateral wheel loads

Lab Experimental Setup – Track Loading System (TLS)

- Track Loading System (TLS) allows for testing of track infrastructure similar to field conditions.
- L_{input} is obtained from strain gauges attached to the rail
- L_{reaction} is obtained from LLED devices installed in the shoulder of crossties being tested

- Primary lab research objective is to study the frictional force between the rail pad and the rail seat.
- Low friction layer made of BoPET used to investigate the importance of friction in lateral force distribution through track infrastructure

Contribution of Friction in Properly Supported Crosstie

Global Distribution of Lateral Forces in <u>Properly</u> Supported Crosstie

Global Distribution of Lateral Forces in <u>Poorly</u> Supported Crosstie

Conclusions

- A higher percentage of lateral wheel loads is transferred to the fastening system under dynamic loading than static loading
- Increasing vertical load increases the lateral bearing force against the shoulder
- Altering the lateral friction between rail pad and rail seat increases the magnitude of lateral bearing force at the shoulder
 - Implications on the design of fastening systems to better distribute lateral loads
- Support conditions influence the magnitude of lateral load transfer into the shoulder

Future Work

- Focused experimentation to better understand lateral forces through the fastening system under varying support conditions
- Investigating the lateral load distribution through the track structure with missing fastening system components
- Comparison of the lateral load performance between the spring clip (Safelok I) and the SkI style (tension clamp) fastening system

Acknowledgements

U.S. Department of Transportation Federal Railroad Administration

- Funding for this research has been provided by:
 - Federal Railroad Administration (FRA)
 - Association of American Railroads (AAR) Technology Outreach Program
- Industry Partnership and support has been provided by
 - Union Pacific Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Amsted RPS / Amsted Rail, Inc.
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
 - TTX Company
- For assistance with research and lab work
 - Brent Wiliams, Donovan Holder, UIUC Machine Shop

An Amsted Rail Compan

Contact Information

Marcus Dersch Senior Research Engineer email: mdersch2@illinois.edu

Donovan Holder *Graduate Research Assistant* email: holder2@illinois.edu

Riley Edwards Senior Lecturer and Research Scientist email: jedward2@illinois.edu

Appendix

TLS Instrumentation Map

Lateral Load Evaluation Device (LLED)

- Lateral and Rail Seat Load Circuits
- Vertical Load Circuit
- Lateral Load Circuit

Rail Displacement (Base Vert. Gauge, Base Lat., Web Lat.)

- Rail Displacement (Base Vert. Field)
 - Embedment Gauges
- Crosstie Surface Strains

- Lateral Crosstie Displacement
- Vertical Crosstie Displacement

Lateral Stiffness

TLS Track Installation

