A Load-Deflection Method for Characterization of North American Concrete Crossties

Joint Rail Conference Track Loading & Crosstie Performance 1 Philadelphia, PA 06 April 2017

Josué C. Bastos, Riley Edwards, Marcus Dersch, Yu Qian, Alejandro Alvarez

U.S. Department of Transportation Federal Railroad Administration

Outline

- Motivation & Objectives
- AREMA C- Test
- C- Test Modification Benefits
- Test Protocol
- Failure Modes
- Results & Discussion

Motivation and Objectives

Research Motivation

- Need for improved understanding of the performance of deteriorated concrete crossties or concrete crossties with poor support conditions
- Improve safety by preventing derailments in locations where track superstructure components and substructure conditions have not been in the optimal state of good repair

Research Objectives

- Determine common failure types and quantify the common track conditions in repeat failure locations
- Quantify the effect worn/degraded track conditions have on critical track component' stress state
- Define concrete crosstie failure

U.S. Department of Transportation

Federal Railroad Administration

Project Overview – Phases of Laboratory Work

- Phase 1: deteriorated crossties and support conditions
 - Gauge widening calculation
 - Quantification of bending moments
 - Various support conditions
 - Center-cracked crossties

- Setting boundaries to the problem
 - Center cracks generated at higher loads
 - Crosstie saw-cutting
- **Phase 3**: new method of characterizing concrete crossties
 - Load vs. deflection curves for 4-point bending tests
 - Crosstie stiffness, crack generation, ultimate strength
 - Modified AREMA center negative bending moment test

AREMA Center Negative Bending Moment Test (AREMA Manual for Railway Engineering, Article 4.9.1.6)

• A pass/fail test based on whether or not there are cracks reaching the first level of prestressing steel at the design specification bending moment

A Modified Center Negative Test at UIUC

- Load Configuration: four-point bending (same as AREMA)
- **Supports**: Steel half-moon bars (*AREMA recommends rubber*)
- Loading: Load to failure (AREMA recommends stopping at specified level)
- Instrumentation: Load cell & Displacement sensor (AREMA recommends load cell)

Protocol

- 1. Ensure bottom of crosstie provides smooth surface for good contact with steel bars
 - Hydrocal or hard grout may have to be applied
- 2. Seating load is applied on smooth surface
 - 3 cycles of loading from 0 to 15 kips to ensure uniform contact with supports
- 3. Execute test
 - Specimen loaded from 0.5 kips to ultimate load at a rate of 5 kips/minute

Motivation for Test Modification

- Opportunity for characterization of concrete crosstie bending capacity
 - A pass/ fail test would not provide enough information
 - Quantifiable characteristics from load vs. deflection curve
 - Ultimate capacity
 (*load cell*)
 - Ultimate displacement (*displacement sensor*)
 - Stiffness assessment (load cell & displacement sensor)
- Stiff support conditions to capture displacement of crosstie accurately
 - Half-moon steel bars (or any other preferred way)

6-inch Support Width Selection

PROS:

- Maps to AREMA CN-
- Stable setup
- Lower ultimate loads required

CONS:

- Does not map to observed condition in the field
- Proximity of loading bars may lead to failure at lower moment than if further apart

Load-Deflection Method for Characterization of North American Concrete Crossties

Effects of Using Wider Support Conditions Load - Displacement

Slide 9

RailTEC's Large Scale Test Frame (LSTF)

- 110-kip actuator
- Load/displacement control
- Static/dynamic modes
- Adjustable crosstie support
 - Currently equipped with half-moon steel bars as supports

Crosstie Failure Modes *Flexural*

Slide 11

• Crushing failure (bending strength reached)

Load-Deflection Method for Characterization of North American Concrete Crossties

Crosstie Failure Modes (cont.) Flexural

Compressive failure (bending strength reached)

Crosstie Failure Modes *Flexural & Shear*

• Combined shear/crushing failure (shear strength reached)

Crosstie Failure Modes (Cont.) Flexural & Shear

• Shear crack observed from greater distance

Load Displacement Results

Load Displacement – Typical Replicates

-oad [kN]

Slide 16

Potential Impact

Transitioning from cracking to ultimate capacity design approach

Check of Gage Widening due to Crosstie Bending

- $\Delta g = \frac{2ld aw}{\sqrt{d^2 + a^2}} + w$
- ∆g: Change of gage w: Width of rail head I: Rail height
- d: Center displacement in center negative bending test
- a: Distance from crosstie center to rail seat centerline
- This simplified, conservative equation shows the low impact of higher center displacement on gage widening due to pure crosstie bending
 - 0.27" of gauge widening for a 0.8" ultimate displacement (compare with 0.19" at 0.4" ultimate displacement)
- Increasing ultimate deflection should not be a safety concern

Additional Results – Wood and Composite

*The displacements of wood and composite ties went beyond the displayed range

Conclusions and Discussion

Conclusions

- A center negative test with steel supports and loaded to failure would:
 - Provide quantifiable results
 - Ultimate capacity
 - Ultimate displacement
 - Stiffness assessment
 - Initiate a discussion on designing ties based on ultimate capacity
 - More economical designs
 - Allow for cracking
- Displacements measured, even at ultimate conditions, do not put gage widening at danger

Acknowledgements

U.S. Department of Transportation Federal Railroad Administration

- Funding for this research has been provided by
 - Federal Railroad Administration (FRA)
- Industry Partnership and support has been provided by
 - Union Pacific Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Progress Rail Services, A Caterpillar Company
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
 - TTX Company
- Additional Industry Support provided by
 - Hailing Yu (John A. Volpe National Transportation Center)
 - Rocla Concrete Ties
 - Steve Matteson (Nortrak Voestalpine)

FRA Tie and Fastener BAA Industry Partners:

CXT Concrete Ties

ANSON

Contact Information

Riley Edwards Senior Lecturer and Research Scientist jedward2@illinois.edu

Marcus Dersch

Senior Research Engineer mdersch2@illinois.edu

Yu Qian

Research Engineer yuqian1@illinois.edu Alejandro Alvarez Reyes Graduate Research Assistant Ivrzrys2@illinois.edu

Josué César Bastos

Graduate Research Assistant cesarba2@illinois.edu

Review of Four-Point Bending Testing (Cont.)

Strain in Cross Section

Effects of Varying Support Conditions Crack Pattern

Support Width at Center = 48 inches

Detailed Test Results

	_	Sleeper Design				
		1	2	3	4	5
Ultimate load	kip	38.2	36.7	45.9	44.4	38.9
	(kN)	(170.1)	(163.4)	(204.0)	(197.4)	(173.0)
D _{0.90}	kip	1.2	1.1	1.1	3.1	1.2
	(kN)	(5.3)	(4.9)	(4.9)	(13.9)	(5.3)
Ultimate Displacement	in	0.320	0.337	0.330	0.512	0.418
	(mm)	(8.1)	(8.6)	(8.4)	(13.0)	(10.6)
D _{0.90}	in	0.023	0.031	0.022	0.062	0.023
	(mm)	(0.6)	(0.8)	(0.6)	(1.6)	(0.6)
7.5-kip Displacement	in	0.0266	0.0225	0.0199	0.0188	0.0183
	(mm)	(0.68)	(0.57)	(0.50)	(0.48)	(0.46)
D _{0.90}	in	0.0017	0.0024	0.0017	0.005	0.0018
	(mm)	(0.04)	(0.06)	(0.04)	(0.1)	(0.05)
7.5-kip Slope	kip/in	266.5	312.7	360.6	372.1	387.1
	(kN/mm)	(46.7)	(54.8)	(63.2)	(65.2)	(67.8)
D _{0.90}	kip/in	25.2	35.6	25.2	71.297	26.9
	(kN/mm)	(4.4)	(6.2)	(4.4)	(12.5)	(4.7)