Mechanistic Design Approach for Concrete Crossties and Fastening System

FRA Concrete Crosstie & Fastener BAA – Industry Partners Meeting Incline Village, NV

7 October 2013

Ryan Kernes, Andrew Scheppe, Riley Edwards, Marcus Dersch

U.S. Department of Transportation Federal Railroad Administration

Outline

- Background
- Definition
- Methodology
- Deliverables
 - Framework
 - Finite Element (FE) Model
 - Simplified Analytical Tool (I-TRACK)
- Path Forward

Background on current design recommendations

- Based primarily on empirical approaches
- Many critical design parameters are not specified
- Representative input loads and loading distribution factors are not a clear part of the design methodology, particularly in the lateral direction
- Lack of clarity behind some of the critical design limits
- Level of detail is inconsistent throughout the design recommendations
- Improvements to current design process are difficult to implement without understanding complex loading environment

Mechanistic Design Definition

- Approach based on loads measured in track structure and properties of materials that will withstand or transfer them
- Uses responses (e.g. contact pressure, relative displacement) to optimize component geometry and materials requirements
- Based on measured and predicted response to load inputs that can be supplemented with practical experience
- Requires thorough understanding of load path and distribution
- Allows load factors to be used to include variability due to location and traffic composition
- Used in other engineering industries (e.g. pavement design, structural steel design)

Overall Project Deliverables

Mechanistic Design Framework

Literature Review Load Path Analysis International Standards Current Industry Practices AREMA Chapter 30

I – TRACK

Statistical Analysis from FEM

Free Body Diagram Analysis Probabilistic Loading

Finite Element Model

Laboratory Experimentation Field Experimentation Parametric Analyses

Role of Deliverables

Deliverable	Level of Sophistication	Ease of Use	Adaptability	Final Objectives	Timeframe
Framework	Low	Medium	High	Guide track system and component design toward mechanistic design	Spring 2014
I-TRACK	Medium	High	Medium	Efficiently estimate system and component performance using mechanistic design	Fall 2013 (basic) Fall 2014 (advanced)
Finite Element Model	High	Low	Low	Perform systematic, detailed analyses of system and component behavior	Summer 2014

Track Structure Design Simplified Framework

Design Framework for Typical Track System

Component Properties

Interface Properties

- Max Contact Pressure
- Relative Displacement
- Wear Characteristics

Determining System Input Loads

- Quantitative methods of data collection (Step 1):
 - Wheel Impact Load Detectors (WILD)
 - Instrumented Wheel Sets (IWS)
 - Truck Performance Detectors (TPD)
 - UIUC Instrumentation Plan (FRA Tie BAA)
- Most methods above are used to monitor rolling stock performance and assess vehicle health
- Can provide insight into the magnitude and distribution of loads entering track structure
 - Limitations to WILD: tangent track (still need lateral curve data), good substructure (not necessarily representative of the broader rail network)

Traffic Distribution – Nominal Wheel Loads

Source: Amtrak – Edgewood, MD (November 2010)

Source: Amtrak – Edgewood, MD (November 2010)

Effect of Traffic Type on Peak Wheel Load

Mechanistic Design Approach

Current Tie and Fastener Research Coverage

Load distribution through rail stress analysis Kartik Manda

Mechanistic behavior of insulator Brent Williams Load quantification Brandon Van Dyk/ Andrew Scheppe

Mechanistic behavior of rail pad assembly Thiago Bizarria

> Clip stress analysis/ Crosstie structural analysis Sihang Wei

Rail seat pressures Matthew Greve

Other research: Concrete materials (Emily Van Dam), FE modeling (George Chen and Austin Zhang)

Acknowledgements

U.S. Department of Transportation

Federal Railroad Administration

- Funding for this research has been provided by the Federal Railroad Administration (FRA)
- Industry Partnership and support has been provided by
 - Union Pacific Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Amsted RPS / Amsted Rail, Inc.
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
 - TTX Company

FRA Tie and Fastener BAA Industry Partners:

