Development of an Analytical Tool for Track Component Response (I-TRACK)

UIUC FRA Tie and Fastener BAA - Industry Partners Meeting Incline Village, NV 7 October 2013

Thiago B. do Carmo, J. Riley Edwards, Ryan G. Kernes

Outline

- Objectives
- Background
- Analytical Tool
 - Project Phases
 - Input and Output Parameters
 - Features
 - Software Presentation
 - Validation of Results
- Vision / Future Work

Overall Project Deliverables

Mechanistic Design Framework

Literature Review Load Path Analysis International Standards Current Industry Practices AREMA Chapter 30 I-TRACK

Statistical Analysis from FEM

Free Body Diagram Analysis Probabilistic Loading

Finite Element Model

Laboratory Experimentation Field Experimentation Parametric Analyses

Objectives

- Efficiently estimate track system and component response using mechanistic design
- Develop a tool to analyze the crosstie and fastening system components based on the finite element (FE) model results (validated by lab and field data)
- Analyze the influence of input parameters on track behavior
- Provide a practical tool to assist a mechanistic design approach of concrete crossties and fastening systems

Loading Environment

Introduction to Track Response Tool

- Input and Output parameters were prioritized for each project phase
- Design of Experiments (DOE) used to reduce the number of model iterations
- Systematic variation of inputs results in equations that describe the component responses using multivariate regression
- I-TRACK composed of equations derived from FE model, laboratory experimentation, field experimentation, and FBD analysis

Project Phases

- Project is divided in 3 phases, which add additional complexity and design options
- Goal is to expedite the development process of the simplified tool and test the accuracy and functionalities on a continuous basis

Version	Input Capabilities	Release Date
v1.0	Load	7 October 2013
	Materials	
v2.0	Interface Interactions	Spring 2014
	Support Conditions	
v3.0	Geometry	Summer 2014
	Components Relative Position	

Inputs and Outputs (v1.0)

Inputs and Outputs (v2.0)

Inputs and Outputs (v3.0)

Inputs and Outputs (cont. v3.0)

I-TRACK Features

- User friendly interface that can be adapted to user's level of expertise in railroad engineering and track component design
- Initially software, potential for iPhone app and other platforms
- Tutorial explaining functionality and examples
- Database containing geometry and material properties of standard components
- Broad list of outputs providing a framework to understand the mechanistic behavior of components
- Prediction of possible failure modes
- Generation of printable reports

The new I-TRACK

University of Illinois at Urbana-Champaign Track Response Approximation Tool - v1.0 RaiITEC		
• Generate	Outputs Report	
RAIL	INSULATOR	
CLIP-SHOULDER	PAD ASSEMBLY	
CROSSTIE	BALLAST	

RALTEC UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

I-TRACK Validation – Clamping Force

Future Work

- Development of I-TRACK 2.0 and I-TRACK 3.0 (add surface interactions, support conditions, and geometry as spreadsheet inputs)
- Continue improving the accuracy of the spreadsheet by running additional interactions on the FE model and refining the equations
- Launch the simplified tool in different platforms: software, phone app (IPhone and Android)
- Deliver final product Fall 2014

Acknowledgements

0

U.S. Department of Transportation Federal Railroad Administration National University Rail Center - NURail USDOT-RITA Tier I University Transportation Center

- Funding for this research has been provided by
 - Federal Railroad Administration (FRA)
 - National University Rail Center NURail
- Industry Partnership and support has been provided by
 - Union Pacific Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Amsted RPS / Amsted Rail, Inc.
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
 - TTX Company
- For assisting with research and code development
 - Ashish Khetan, George Chen, Brent Williams, Prof. Shin, Brandon Van Dyk, Prof. Andrawes

FRA Tie and Fastener BAA Industry Partners:

Questions?

Thiago Bizarria do Carmo University of Illinois at Urbana-Champaign Department of Civil and Environmental Engineering Email: carmo2@illinois.edu

Thank you!