William W. Hay Railroad Engineering Seminar

Speaker #1 "Shared-use Passenger Corridors in California: HSR and the Peninsula Corridor"

Sam Levy - Massachusetts Institute of Technology

#2 "Capacity Allocation in Vertically Integrated Railway Systems: A Sequential Bargaining Game Approach"

Ahmadreza Talebian - University of Illinois at Chicago

Date: Friday, April 17, 2015

Time: Seminar Begins 12:20

Location:

Newmark Lab, Yeh Center, Room 2311 University of Illinois at Urbana-Champaign

Sponsored by

Capacity Allocation in Vertically Integrated Railway Systems: A Sequential Bargaining Game Approach with Focus on the US Context

Ahmadreza Talebian, Bo Zou University of Illinois at Chicago

Hay Seminar April 17, 2015

THE
UNIVERSITY OF
ILLINOIS
AT
CHICAGO

Outline

- Background
- The model
 - Preprocessing
 - Bargaining game with complete information
 - Bargaining game with incomplete information
- Numerical analysis
- Concluding remarks

Background

Background

• Freight side:

- 15% increase in Class I Railroads' revenue ton-miles between 2001 and 2011
- About 6800% increase in originated carloads of crude oil on Class I Railroads

Background

- Challenges of Higher Speed Rail lines
 - Single tracks with siding (meets and overpasses)

Issues to be considered:

- Complementary feature of rail tracks
- Endogenous capacity
- Amtrak's priority (Public Law 110-432)
- Temporal variations in passenger demand
- Train schedule inconvenience to passengers
- Freight railroads keep their operating and financial information confidential

Preprocessing stage

Module 1: Passenger delay components calculation

Module 2: Freight train schedule generation

Module 3: Establishing utility and cost values

Equilibrium determination stage

Module 4: Complete information gaming

Module 5: Incomplete information gaming

Preprocessing stage

- A set of feasible passenger train schedules is given
- Constant fare
- An initial schedule (the most preferred) and associated travel demand are given
- Delay components:
 - Schedule delay
 - En-route delay

Preprocessing stage

Preprocessing stage

- Each O-D pair has a passenger demand profile (Preferred Departure Time)
- Passengers are served by a predetermined number of trains

Preprocessing stage

- Passenger demand is elastic w.r.t. schedule delay
- Find the number of passengers departing the origin of station pair w at each time period s:

$$q_{s_i}^{w,m} = Q^{w,m} \left(1 - e_{d/w} \left(1 - \frac{S_{s_i}^{w,m}}{S_{int}^{w,m}} \right) \right)$$

Preprocessing stage

Module 2: Solving the freight train scheduling problem

- Freight train scheduling is less precise and stringent in the US
- Freight trains are inserted among passenger trains (scheduling priority is granted to passenger trains)
- Minimize total freight side cost, which consists of foregone demand cost, train en-route delay cost, and train departure delay cost

Talebian, A., Zou, B., 2015. Train planning on a single track shared-use passenger and freight corridor with demand considerations: a focus on the US context. Submitted to Transportation Research Part B: Methodological.

Preprocessing stage

Module 3: Establishing utility and cost values

 $U_{\text{passenger}}$ = operator revenue – (passenger schedule delay cost + operating cost of stopping status + passenger en-route delay cost)

 C_{freight} =Lost demand cost + track maintenance cost + departure delay cost + en-route delay cost + operating cost

Equilibrium determination

Solving complete information bargaining game

- Stationary structure of the game is employed to solve the game
- Equilibrium: <u>a schedule maximizing the PRA's utility minus</u> FRR's cost (independent of the player initiating the game)
- Net transfer from FRR to PRA:

$$SDP_1 - AC_1 = \frac{1}{1 - \delta_F \delta_P} \Big((1 - \delta_P) u_{S^*}^P + (\delta_P - \delta_F \delta_P) C_{S^*}^F \Big)$$

Equilibrium determination

Solving incomplete information bargaining game

- Class I freight railroads consider their operating and financial information highly critical to profitability and thus confidential
- A simplification: two-level bargaining
 - Upper level: price bargaining for each passenger train schedule
 - Lower level: schedule bargaining given the price for each schedule

Equilibrium determination

Solving incomplete information bargaining game

Upper-level: price bargaining

$$p_{S_{i}}^{1*} = \begin{cases} \frac{1}{1 - \delta_{F} \delta_{P}} \left((\delta_{F} - \delta_{F} \delta_{P}) u_{S_{i}}^{P} + (1 - \delta_{F}) \overline{C}_{S_{i}}^{F} \right) & \theta > \hat{\theta} \\ \frac{1}{1 - \delta_{F} \delta_{P}} \left((\delta_{F} - \delta_{F} \delta_{P}) u_{S_{i}}^{P} + (\delta_{F} \delta_{P} - \delta_{F}^{2} \delta_{P}) \overline{C}_{S_{i}}^{F} + \underline{C}_{S_{i}}^{F} (1 - \delta_{F} - \delta_{F} \delta_{P} + \delta_{F}^{2} \delta_{P}) \right) & \theta \leq \hat{\theta} \end{cases}$$

where

$$\widehat{\theta} = \frac{\left(\overline{C}_{s_i}^F - \underline{C}_{s_i}^F\right)(1 - \delta_F \delta_P)}{u_{s_i}^P - \underline{C}_{s_i}^F(1 - \delta_F \delta_P) - \overline{C}_{s_i}^F(\delta_F \delta_P)}$$

Equilibrium determination

Solving incomplete information bargaining game

- Lower-level: schedule bargaining
 - Given the price of each schedule, PRA and FRR bargain to determine an equilibrium schedule
 - The schedule bargaining is a game with complete information as the price of each schedule is already determined

• Set up:

- 11 blocks: 6 track segments and 5 sidings
- 2 O-D pairs (one in each direction)
- Each track segment 18 miles long
- Sidings evenly distributed along the corridor, each
 2 miles long
- Total corridor length: 120 miles
- Operating speed
 - Freight trains: 60 mph
 - Passenger trains: 120 mph

- Set up (cont'd)
 - Consider daily service frequency of 1-6 trains
 - Elastic passenger demand (elasticity: 0.4, based on Adler et al. (2010))
 - Parameter values are obtained from the literature
 - $-\delta_P = 0.9, \delta_F = 0.85$

- Net internal transfers is greater if FRR initiates the game
- Net internal transfer could be negative (FRR should pay to PRA)

 Discount factors significantly impact the net internal transfer between agents

Concluding remarks

- Proposed the first sequential bargaining game model to identify capacity shares and associated charges on shared use rail corridors in the US context
- Bargaining game with complete information:
 - A schedule maximizing the utility of the passenger rail agency minus the cost of the freight railroad is the equilibrium solution
 - The equilibrium schedule is independent of the player initiating the game
- Two-level price and schedule bargaining extension for incomplete information
- On-going research: numerical analysis

UIC

Thank you!

Questions and comments

Ahmadreza Talebian
PhD Student, Research Assistant
Department of Civil and Materials Engineering
University of Illinois at Chicago

ataleb2@uic.edu