

National Department of Transport Infrastructure Railway Infrastructure Board

PROSEFER August 4, 2014

Mario Dirani

Railway Infrastructure Director
Brazil

Summary ☐ History □ Evolution of Railway Concessions in Brazil □ Problems to solve □ National Program of Railway Safety in Urban Areas □ Examples of Interventions

History

- **1957** Law nr. 3115: creation of RFFSA Federal Railway Network, with administrative unification of 18 railways, 37,000 km of rail lines, operating cargo, intercity and urban passenger transports.
- 1971 Law nr. 10410/SP: creation of Fepasa by the fusion of 5 railways in the state of São Paulo, with 5,000 km.
- 1984 Urban railway transports are transferred to CBTU.
- 1988 Urban railway transports are transferred to the states.
- 1992 RFFSA was included in the National Privatization Program.
- 1995 Concessions Law (Law nr. 8987).
- 1999 RFFSA was closed down (Decree nr. 3277).
- 2007 Extinction of RFFSA: patrimony transferred to DNIT.

Total investments of R\$ 39.7 billions (about US\$ 18 billions) – 1997/2013

PROSEFER – National Program of Railway Safety in Urban Areas

Increase in transport from 253.3 (1997) to 490 (2013) millions of net tons

PROSEFER – National Program of Railway Safety in Urban Areas

Decrease from 75.5 to 12.05 accidents/million of trains.km

Increase in rolling stock - locomotives and freight cars

Problems to solve

- •Concessions of railways involved cargo transportation only.
- •Intercity transport of passengers, gradually abandoned by RFFSA, was extinct (except Vale Company).
- Passenger stations became non-operational.
- Passage of trains through urban areas became an inconvenience (long and slow trains).
- ■Eg.: train 1500 m long, moving at 18 km/h (5 m/s) Crossing time: 1500/5 = 300s = **5min**

People and vehicles take the risk of crossing ahead of trains!

What is PROSEFER?

- ✓ PROSEFER is the National Program of Railway Safety in Urban Areas
- ✓ Scope of the study:
 - 15,000 km of railways;
 - 16 states;
 - 596 municipal districts;
 - 5,609 crossings analyzed;
 - 355 invasions of right-of-way identified;
 - 17 corridors where 95% of railway cargo transported in Brazil has circulated (2008).

Objectives of PROSEFER

- ✓ For society
 - Increase in urban quality of life;
 - Increase on safety for the population;
 - Reduction of accident risk;
 - Increase in operations;
 - Decrease in transports costs.
- ✓ For the government
 - Creation of a management tool;
 - Identification of prioritary actions and works;
 - Updatable database.

PROSEFER corridors

PROSEFER – National Program of Railway Safety in Urban Areas

Developed Activities

Data collection

Data collection from concessionaries, National Agency of Land Transports (ANTT), Ministry of Transports, Brazilian Institute of Geography and Statistics (IBGE) and others, related to the topics:

- Corridors
 - · Cargo, rails, rate of railway sleepers, grades, curve radius, operation speed.
- Cities
 - Socioeconomic data (GDP, Population, HDI, and others).

Field Survey

- ☐ All extention of corridors covered.
- ☐ Field surveys based on rules, local needs and expertise of survey teams.
- **□** Appropriate forms for each survey:
 - Level crossing form.
 - Overpass or underpass form.
 - Right-of-way invasions form.
 - Urban traffic at level crossing form.

Field Survey – level crossing diagram

PROSEFER – National Program of Railway Safety in Urban Areas

Field Survey - photographs

PROSEFER - National Program of Railway Safety in Urban Areas

Field Survey

√ 5,609 crossings analyzed

- 1,856 Urban level crossings
- 1,519 Rural level crossings
- 929 Overpasses
- 584 Underpasses
- 721 Pedestrian crossings
- ✓ 279 level crossings were considered critical

Evaluation criteria of level crossings

The characterization of critical points has considered a number of procedures that guide the decision to determine whether or not the object of analysis as critical:

- Evaluation of Transit Times
- Momentum of Circulation and Degree of Importance
- Distances of Visibility
- Seasonality (eg.: harvest times)

Evaluation criteria of level crossings

The conditions of protection and safety of a level crossing are determined by the value of:

Degree of Importance – Gi (NB 1238/1989)

$$Gi = f \cdot T \cdot V$$

f = factor for conditions of visibility, location and traffic;

T = quantity of trains in both directions, per day;

V = volume of road vehicles in both directions, per day.

Momentum of Circulation – MC (NB 666/1989)
 MC (Vd x Td + 1,4 x Vn x Tn) x L

Vd - Daily average volume of road vehicles in day time

Td - Daily average volume of trains in day time

Vn - Daily average volume of road vehicles in night time

Tn - Daily average volume of trains in night time

L - Factor that considers the number of rail lines to cross

Number of lines	L
1	1
2	1,3
3 or more	1,5

Degree of Importance – GI (NB 1238/1989) – f factor

Characteristic of crossing				ue	Weight of importance	Final value (2x3)
	1			2	3	4
01		over 300 m	2			
02	Visibility	150 to 300 m	3		10	
03		under 150 m	4			
04	9.5.5.5	under 3 %	2			
05	approach on public	3 to 5 %	3		7	
06	road	over 5 %	4			
07	Maximum	under 40 km/h	2			
80	authorized speed	40 to 80 km/h	3		7	
09	of fastest train	over 80 km/h	4			
10		single	2			
11	Number of rail lines	double	3		6	
12		triple of more	4			
13	Maximum	under 50 km/h	2			
14	authorized speed	50 to 80 km/h	3		5	
15	of road traffic	over 80 km/h	4			
16		under 5 %	2			
17	Traffic of buses	5 to 20 %	3		5	
18		over 20 %	4			
19		under 5 %	2			
20	Traffic of trucks	5 to 20 %	3		4	
21		over 20 %	4			
22		under 5 %	2			
23	Unusual traffic	5 to 20 %	3		4	
24		over 20 %	4			
25		under 5 %	2			
26	Pedestrian traffic	5 to 20 %	3		2	
27		over 20 %	4			
28	Total					

$$f = \frac{\Sigma Vi.Wi}{100}$$

$$(1 \le f \le 2)$$

PROSEFER - National Program of Railway Safety in Urban Areas

Conditions of visibility of a level crossing

The conditions of visibility of the road user, related to the train, are also given by the maximum authorized speed (VMA) to the road, divided in ranges:

1st range: VMA < 60 km/h (urban roads)

2nd range: 60 ≤ VMA ≤ 90 km/h (rural roads)

3rd range: VMA > 90 km/h (highways)

Table of Solutions – MC and GI

TYPE OF VIGILANCE	SITUATION IN THE RANGE (MC E GI)	SOLUTION
Optional	1st range and GI < 3,000 2nd range and GI < 1,500	Adequate road and rail signalizing plates and satisfactory conditions of visibility.
Obligatory	1st range and 3,001 < GI < 25,000 2nd range and 1,501 < GI < 12,000	Adequate road and rail signalizing plates, with signalizing devices operated manually and satisfactory conditions of visibility.
Automatic	1st range and 25,001 < GI < 50,000 2nd range and 12,001 < GI < 30,000 3rd range and 1,001 < GI < 25,000	Adequate road and rail signalizing plates, with signalizing devices operating automatically.
	1st range and GI > 50,000 2nd range and GI > 30,000 3rd range and GI > 25,000	Construction of overpasses, underpasses or rail contours.

PROSEFER - National Program of Railway Safety in Urban Areas

Solutions for conflicts

1. Variant or Railway Contour

- ✓ Variant involves more than one municipality
- ✓ Contour develops in the same municipality

2. Overpasses or Underpasses

- ✓ Viaducts, footbridges, fences
- ✓ Underpasses for vehicles and/or pedestrians

3. Integrated Solutions

- ✓ Involve more than one crossing
- ✓ Can involve more than one type of solution (overpasses, underpasses, lowering of track, fences, footbridges)

Programmed Interventions of PROSEFER

- ✓ In 186 municipalities (from 596 studied)
- ✓ Investments of US\$ 3.5 billions (basis May 2009);
 - US\$ 1.3 billion for 28 rail contours
 - US\$ 1.2 billion for 6 variants
 - US\$ 330 millions for 158 overpasses/underpasses
 - US\$ 270 millions for 25 integrated solutions

Socioeconomic Benefits

Reduction in fuel consumption:
 About US\$ 3 billions
 2.7 billions of liters

Reduction in obstruction time:
 About US\$ 5 billions

Reduction in emission of pollutant gases to atmosphere:
 About US\$ 41 millions
 Significant benefit considering the environmental component.

Socioeconomic Benefits

Total of socioeconomic benefits: US\$ 9.5 billions

PROSEFER – National Program of Railway Safety in Urban Areas

Increase in transport capacity

- ✓ The objective of this evaluation is to calculate the increase in transport capacity of a corridor, considering operational speed. It was calculated the reduction in transit time of trains, under present and future scenarios.
- ✓ With the construction of proposed works, the railways affected will transport about 16.7% more net tons in relation to 2008 (basis of the study).
- ✓ Railways will compete in better conditions with other modals.

IPP – Index of Prioritization PROSEFER

Classification by order of importance of the works determined by PROSEFER, through an administrative tool that utilizes several parameters.

These indicators are divided in several subjects:

- · Technical;
- Socioeconomic;
- Environmental;
- · Indicators of feasibility;
- Operational; and
- · Strategic.

IPP – Index of Prioritization PROSEFER

AREA	WEIGHT	ITEM	WEIGHT	CRITERION	WEIGHT	VALUE	RESULT
		Planimetry	0.15	Doesn't meet the standard	0.00		
				Meets the standard	1.00		
		Altimetry	0.15	Doesn't meet the standard	0.00		
		Allimetry		Meets the standard	1.00		
		Gauge	0.20	Metric	1.00		
				Large	0.00		
TECHNICAL	0.5	D Level Year	0.20	From 2009 to 2023			0.000000
		Level of difficulty to elaborate	0.20	Low	1.00		
		studies, projects and works		Medium	0.50		
		Studies, projects and works		High	0.00		
		Segregation	0.10	Yes	1.00		
		Segregation	0.10	No	0.00		
		Sum	1.00				0.000000
	2.5	Accidents	0.20	Yes	1.00		
				No	0.00		
				No Information	0.00		
		State Capital?	0.20	Yes	1.00		
				No	0.00		
		Railway junction	0.20	1 track	0.00		
SOCIOECONOMIC				2 tracks	0.30		
				3 tracks	0.60		
				> 3 tracks	1.00		
		Invasions	0.20	Yes	1.00		
				No	0.00		
		Time of obstruction (min)	0.20				0.000000
		Sum	1.00				0.000000
	0.5	Environmental Protection Area or	0.20	Yes	1.00		
ENVIRONMENT		Conservation Unit 0.20	No	0.00			
		Dangerous cargo	0.50	Yes	1.00		
				No	0.00		
		Native lands	0.30	Yes	1.00		
				No	0.00		
		Sum	1.00				0.000000

PROSEFER - National Program of Railway Safety in Urban Areas

IPP – Index of Prioritization PROSEFER

AREA	WEIGHT	ITEM	WEIGHT	CRITERION	WEIGHT	VALUE	RESULT
	1.5	IRR	0.30				0.000000
INDICATORS OF		B/C	0.30				0.000000
FEASIBILITY		Per capita investment	0.40				0.000000
		Sum	1.00				0.000000
		Freight volume	0.20				
		Passengers	0.10	Yes	1.00		
				No	0.00		
		Trains/day	0.20				0.000000
		Nr. of eliminated level crossings	0.20				0.000000
		Nr. of roil trooks	0.10	1 track	1.00		
OPERATIONAL	2.5	Nr. of rail tracks	0.10	≥ 2 tracks	0.00		
OFERATIONAL		Existence of train formation yard	0.10	Yes	1.00		
			0.10	No	0.00		
		Maximum authorized speed		20 km/h	20 km/h 1.00		
			0.10	30 km/h	0.70		
			0.10	40 km/h	0.40		
				> 40 km/h	0.00		
		Sum	1.00				0.000000
	2.5	Operational gain	0.20	From 0 to 100			0.000000
		Strategic importance	0.20	From 0 to 10			0.000000
		Port access	0.20	Yes	1.00		
STRATEGIC				No	0.00		
		Growt Acceleration Program	0.20	Yes	1.00		
			0.20	No	0.00		
		PNLT/CNT	0.20	Yes	1.00		
				No	0.00		
		Sum	1.00				0.000000
SUM	10.0	Index of Priorization PROSEFER - IPP 0				0.000	

PROSEFER - National Program of Railway Safety in Urban Areas

Prioritization of Solutions

Nr.	Municipality	
1	Curitiba	

São Francisco do Sul

Belo Horizonte

Barra Mansa

Joinville

Três Rios

Candeias

Belo Horizonte

Ponta Grossa

Paranaguá

3

4

5

6

7

8

9

10

UF PR

SC

MG

SC

RJ

RJ

BA

MG

PR

PR

Corridor

05

07

01

07

02

01

11

03

05

05

PROSEFER – National Program of Railway Safety in Urban Areas

25,500,000 4,400,000

Investment (US\$)

43,000,000

22,000,000

2,200,000

25,000,000

22,500,000

8,300,000

6,000,000

9,200,000

Type of Work

Variant

Contour

Viaduct

Contour

Integrated Sol.

Integrated Sol.

Contour

Viaduct

Viaduct

Viaduct

PROSEFER - National Program of Railway Safety in Urban Areas

PROSEFER - National Program of Railway Safety in Urban Areas

Examples of interventions – Barra Mansa/RJ

PROSEFER - National Program of Railway Safety in Urban Areas

Examples of interventions – Maringá/PR – lowering : 7.6 km

PROSEFER - National Program of Railway Safety in Urban Areas

Examples of interventions – Maringá/PR – false tunnel: 1.6 km

PROSEFER - National Program of Railway Safety in Urban Areas

PROSEFER - National Program of Railway Safety in Urban Areas

PROSEFER - National Program of Railway Safety in Urban Areas

Examples of interventions – Santa Maria/RS

PROSEFER - National Program of Railway Safety in Urban Areas

Examples of interventions – Araraquara/SP – contour: 8.65 km

PROSEFER - National Program of Railway Safety in Urban Areas

Examples of interventions – São José do Rio Preto/SP

Derailment in São José do Rio Preto, Nov 24, 2013

PROSEFER – National Program of Railway Safety in Urban Areas

Examples of interventions – São José do Rio Preto/SP – variant: 44 km

Thank you!

National Department of Transport Infrastructure www.dnit.gov.br

Railway Infrastructure Board mario.dirani@dnit.gov.br

PROSEFER – National Program of Railway Safety in Urban Areas