Optimal Grade Crossing Project Selection for Improved Running Time on Passenger Rail Corridors

C. Tyler Dick, P.E. University of Illinois at Urbana-Champaign Brennan M. Caughron BNSF Railway

Global Level Crossing Safety Symposium - August 5th, 2014

Demand for Passenger Service Upgrades

- New Amtrak ridership record 10 of past 11 years... 31.6 million in FY13
- Amtrak ridership is growing faster than any major travel mode
- Continued interest in increasing the frequency and speed of intercity passenger rail service on shared rail corridors
- Increase passenger trains speed and frequency at grade crossings
- Passenger rail corridor development must be supported by investment in grade crossing infrastructure

Slide 3

Track Speed and Grade Crossing Upgrades

Corridor Improvements

Passenger rail corridor involves a series of integrated systems

TRACK STRUCTURE & GEOMETRY

ROLLING STOCK

GRADE CROSSINGS

SPECIAL

TRACKWORK

SIGNALS & TRAIN CONTROL

"Go Fast by Not Going Slow..."

Ultimate Project Selection

Present Model Scope

Project Benefits Depend on Boundary Conditions

Opportunities to Reduce Running Time

- Improvements can be made to address schedule minimum run time and schedule reliability
- Improvement projects have different impacts on both schedule components

Schedule minimum run time Schedule reliability (uncertainty)

- Infrastructure
 - Track structure
 - Track geometry
 - Signals
 - Grade crossings
- Rolling stock
 - Acceleration
 - Top speed
 - Curving performance

- Single vs. double track
- Siding length and spacing
- Capacity utilization
 - Existing capacity
 - Other rail traffic
- Station dwell
- Passenger delays

Model Objective Function

Model Constraints (1 of 2)

$\sum_{n=1}^{N} \sum_{c=0}^{C} x_{n,c} p_{n,c} \le B$	Budget constraint	(2)		
$\sum_{s=0}^{S} v_{n,s,t} \sigma_s \leq \sum_{c=0}^{C} x_{n,c} \nu_c$	Train speed < infrastructure speed			
$z_{n,s,s^*,t} \leq v_{n,s^*,t} \forall n, s, s^*, t$	Acceleration and braking link (1)	(4)		
$z_{n,s,s^*,t} \leq v_{n-1,s,t} \forall n,s,s^*,t$	Acceleration and braking link (2)	(5)		
$z_{n,s,s^*,t} + 1 \ge V_{n,s^*,t} + V_{n-1,s,t} \forall n, s, s^*, t$	Acceleration and braking link (3)	(6)		
$l_n - a_{n,t} - b_{n+1,t} \ge 0 \forall n, t$	Segment acceleration and braking dist.	(7)		

Model Constraints (2 of 2)

$b_{n,t} \ge \sum_{s=0}^{S} v_{n-1,s,t} \beta_{s,t} - v_{n,s,t} \beta_{s,t} \forall \ 2 \le n \le N, t$	Braking distance	(8)
$a_{n,t} \ge \sum_{s=0}^{S} v_{n,s,t} \alpha_{s,t} - v_{n-1,s,t} \alpha_{s,t} \forall \ 2 \le n \le N, t$	Acceleration distance	(9)
$\sum_{s=0}^{S} v_{n,s,t} \sigma_s \le h_{n,t} \forall n, t$	Station stopping constraint	(10)
$\sum_{s=0}^{S} v_{n,s,t} = 1 \forall n, t$	One operating speed per service on each segment	(11)
$\sum_{c=0}^{C} x_{n,c} = 1 \forall n$	One track maximum speed on each segment	(12)

Speed

Train Performance Calculator Constraints

Minimum Upgrade Length Constraints

Case Study – Porter, IN to St. Joseph, MI

- One round trip frequency per day
- Route length of 176 mi
- 79 MPH maximum speed
- 44 MPH average speed (good case for improvement)
- Annual ridership 106,662 (FY '11)

PERE MARQUETTE

370	∢ Train Number ►						371		
Daily	♦ Normal Days of Operation ▶						Daily		
R ፓ	♦ On Board Service						R 🖵		
Read Down	Mile	Mile 🧡				Symbol			Read Up
4 55P	0	D	р	Chicago, IL–Union Station	(CT)	● હ , Q 7	Α	١r	10 38A
7 38P	89			St. Joseph-Benton		○ <i>व</i>			9 44A
				Harbor, MI	(ET)				
8 14P	116		1	Bangor, MI (South Haven)		0			9 07A
8 56P	151			Holland, MI		<u>୍</u> ୱାର୍କ୍ତ୍ର ଅନ୍ତ୍ର			8 26A
9 55P	176	Α	r	Grand Rapids, MI	(ET)	ાર્ (ગ	D	р	7 40A

- Selected segment from Porter to St. Joseph for current PSM case study
- Added hypothetical commuter rail service to demonstrate functionality of model

Route Characteristics

Upgrade Treatments

Track Class	Maximum Train Speed (MPH)	Track Structure	Signal System	Grade crossings / Misc.
Class 3	60	Replace 1/3 Cross Ties (wood), 136RE CWR, Surfacing		Curve shift
Class 4	80	Replace 1/3 Cross Ties (wood), 136RE CWR, Surfacing	СТС	Curve shift
Class 5	90	Replace 1/3 Cross Ties (wood), 136RE CWR, Surfacing	CTC/AT S/ATC	Curve shift, Four quad gate crossings
Class 6	110	Replace 2/3 Cross Ties (wood), 136RE CWR, Surfacing	CTC/AT S/ATC	Curve shift, four quad gate crossings with intrusion detection, fenced ROW

Case Study Input Parameters

- Capital costs from Quandel Consultants (2011)
- Maintenance costs from Zarembski et al (2002)
- Discount rate 5%, 10 year period
- Equal train running time weights (alpha 1 = alpha 2)
- Identical train consists for each service (1 loco, 6 coach, 1 NPCU*)
- Acceleration and braking performance from simplified TPC
- Mixed Integer Program (MIP) with GUROBI 5.0 solver
 - 1-2 minutes to optimal solution for each scenario

Inputs

Solution

Initial vs. Final Condition (\$45M)

Service Speeds (\$45M)

Change in Speed and Segment PV Cost (\$45M) —Change in Speed —Cost

Grade Crossing Improvements

- Improved crossings shown in orange
- Only a subset of crossings are improved corresponding to segments with speed improvement
- Crossings near speed restrictions and unimproved segments do not need to be upgraded, minimizing investment

Service Running Time vs. PV Cost

Summary

- Grade crossings and protection devices are one part of the integrated passenger rail corridor system
- Can't view in isolation due to interactions and train performance
- Requires a corridor approach to evaluate benefit of projects
- Optimization can prioritize and target investment for maximum return and suggest appropriate budgets for corridor upgrades

Thank you for your attention!

C. Tyler Dick, P.E. Senior Research Engineer Rail Transportation and Engineering Center (RailTEC) University of Illinois at Urbana-Champaign E-mail: ctdick2@illinois.edu

Partial support for the authors from:

National University Rail Center (NURail) a USDOT-OST Tier 1 University Transportation Center

U.S. Department of Transportation

Research and Innovative Technology Administration

