August 6th, 2014

Ali Rezvani, Ricardo Cruz, Andrew Thomas

A New Cost-Benefit Methodology for Highway-Railway Grade Crossing Safety Programs

Motivation

- Competition for increasingly scarce resources is intensifying
 - Insufficient infrastructure investment over the decades is impacting economic activity
 - Public sector has a large debt and pension fund burden which reduces funding for infrastructure
- Previous research and the resulting models/frameworks were challenged by limited data and computing capacity
 - Reaction of traffic to infrastructure changes such as closures of grade crossings were given minimal consideration
 - Data connected by geospatial coordinates allows for fine tuning infrastructure asset management
- Best practices for identifying needs and defending funding requests are adapting to new technology-driven capabilities
 - More precise estimates of safety incident probabilities
 - More accurate estimates of the costs and benefits of safety enhancements

State of the Practice

Hazard Index

- Produces a values for prioritizing crossings relative to each other
- The higher the value the greater the hazard the higher the priority
- Primarily based upon train and highway traffic volumes
- Other variables used in NC:
 - Sight distance
 - School buses & passenger loads
 - Warning devices
 - Crash history
 - Number of tracks
 - Maximum train speed

Other states may have additional or different criteria

USDOT Accident Prediction Model

- Produces a value for an individual crossing in "predicted crashes per year"
- Can rank crossings based on predicted crashes as well as rank crossing safety projects with other highway safety projects
- Developed using nationwide crash data and statistical regression
- Variables include:
 - Train and highway traffic volumes
 - Crash history
 - Number of tracks
 - Highway type
 - Highway lanes
 - Among others

How Would the New Method Work?

What do we expect from a data driven method?

- Measure the cost of a highwayrail grade crossing crash
- Use the crash costs to screen for high risk crossings
- Perform Benefit Costs Analysis (BCA) for an individual crossing safety improvement project
- Prioritize safety improvement project under budget constraints

Profiles of Consequences

Highway vs. Rail Crashes

http://www-fars.nhtsa.dot.gov/Main/DidYouKnow.aspx

http://safetydata.fra.dot.gov/OfficeofSafety/publicsite/summary.aspx

Cost of a Grade Crossing Crash

Elements of Crash Cost

Primary Effect Costs

- Direct, indirect, and intangible costs associated with property damage, injury, and fatal crashes (more visible at the time of the crash)
 - Injury and Fatality cost;
 - Highway vehicle damage;
 - Rail Infrastructure Damage;
 - Rail Equipment Damage;
 - HazMat release cost;

Secondary Effect Costs

- Costs accrued to delayed travelers and cargo, and to parties beyond the immediate road and rail travelers and service operators (less visible at the time of the crash)
 - Delay and Rerouting Costs
 - Supply Chain Transport Costs
 - Supply Chain Inventory Cost

Cost of an already existing crash

- Train 55zp304 northbound struck unoccupied vehicle that was stuck on the track. Driver of vehicle exited vehicle prior to impact and was not injured. Engineer advised after striking vehicle fumes from the radiator caused burning and irritation to his eyes. Stated he was not injured and refused medical assistance.
- Simple Crash: No Fatality; No Injury; No HazMat;
- What is the Cost?

	Cost Element	Cost
sts	Fatality and Injury Costs	0
t Cost	HazMat Release Cost	0
Effec	Vehicle Property Damage	10,000
mary	Rail Equipment Damage	8,045
Pri	Rail Infrastructure Damage	923
	Vehicle Rerouting Costs	4,768
S	Value of Passenger Time	3,536
Cost	Truck Delay/Rerouting Cost	86
Effect	Value of Truck Driver Time	45
dary E	Train Idling Cost	91
econo	Train Crew Cost	39
Ŵ	Truck Supply Chain Cost	135
	Rail Supply Chain Cost	23,896
	Total:	\$51,564

Objective a Data Driven Method

Data Driven		State of Practice
Measure the cost of a highway-rail grade crossing crash	\approx	No major frame work before NCHRP-755
Use the crash costs to screen for high risk crossings		
Perform Benefit Costs Analysis (BCA) for an individual crossing safety improvement project		
Prioritize safety improvement projects under budget constraints		

Screening for Potentially Hazardous Crossings

Expected crash cost = crash probability * (primary effect costs + secondary effect costs)

How to calculate the Expected Crash Cost

- FRA formulation uses crossing characteristics to estimate the crash probability:
 - Number of main track; number of through trains, highway paved, maximum timetable speed, highway type, number of highway lanes and ...
- FRA has formulations for calculating:
 - P(A): probability of crash
 - $P(FA \mid A)$: conditional probability of fatality given a crash
 - P(IA | A): conditional probability of injury given a crash

• Expected Crash Cost =

$$P(A) \times \begin{pmatrix} P(FA|A) \times (C_{FTL} + PD_{FTL}) + \\ P(IA|A) \times (C_{INJ} + PD_{INJ}) + \\ (1 - P(FA|A) - P(IA|A)) \times PD_{PDO} \end{pmatrix}$$

- C_{FTL} and C_{INJ} represent the fatality and injury cost of fatal and injury crashes;
- PD_{FTL} , PD_{INJ} and PD_{PDO} are property damage for Fatal, Injury and Property Damage Only crashes

Non-Injury Costs of the Crash

	Severity	Non Injury Primary Cost	Non Injury Secondary Cost
Crash 1	PDO	13,574	49,408
Crash 2	PDO	5,074	30,764
Crash 3	INJ	94,891	3,042
Crash 4	INJ	54,891	4,071
Crash 5	PDO	13,574	52,186
Crash 6	PDO	5,574	67,495

Applying the methodology to NC

crossing	Adjusted Crash Probability	Probability of Fatality, should the crash happens	Probability of Injury, should the crash happens	Expected Injury and Fatality Cost, should the crash happen	Expected Total Cost of the Crash, should the crash happen	Estimated Crash Cost of the Highway-Rail Grad Crossing
1	6.11%	13.14%	28.06%	\$848,142	\$908,708	\$55,556
2	4.52%	14.97%	25.33%	\$959,919	\$1,022,760	\$46,227
3	4.44%	14.55%	31.23%	\$939,472	\$1,002,613	\$44,545
4	4.91%	12.71%	26.00%	\$819,679	\$879,301	\$43,202
5	4.61%	13.31%	25.83%	\$856,579	\$917,048	\$42,279
6	3.99%	15.11%	28.21%	\$971,401	\$1,034,896	\$41,335
7	4.45%	13.14%	25.88%	\$846,098	\$906,326	\$40,323

Objective a Data Driven Method

Data Driven		State of Practice
Measure the cost of a highway-rail grade crossing crash	\bigotimes	No major frame work before NCHRP-755
Use the crash costs to screen for high risk crossings	\bigotimes	Use the Hazard index to screen for high risk crossings
Perform Benefit Costs Analysis (BCA) for an individual crossing safety improvement project		
Prioritize safety improvement projects under budget constraints		

Preliminary Benefit Cost Analysis Using the Expected Crash Cost

Why Benefit Cost Analysis?

- Increasing competition for increasingly scarce resources
- Insufficient infrastructure investment over the decades is impacting the US economy
- Public sector has a large debt and pension fund burden which reduces funding for infrastructure
- BCA is a systematic approach to estimating the strengths and weaknesses of alternatives that satisfy transactions, activities or functional requirements for a business. It is a technique that is used to determine options that provide the best approach for the adoption and practice in terms of benefits in labor, time and cost savings etc.
 - To determine if it is a sound investment/decision (justification/feasibility),
 - To provide a basis for comparing projects. It involves comparing the total expected cost of each option against the total expected benefits, to see whether the benefits outweigh the costs, and by how much

Safety Improvement Costs and Benefits

- Project Cost: Investigation, Design and Implementation Costs
 - NC-DOT's historical records
- Crossing Safety Costs: change the expected likelihood/cost of having a crash in a crossing

 Highway Safety Manual / Crash Modification Factors Clearing House
- Maintenance and The State of Good Repair Costs: change the traffic flow patterns and total vehicle-miles driven on road and change the total maintenance costs
 - NC-DOT's Historical Records
 - FHWA
- Emission/noise pollutions: change the total delay time/total drive time and impact the emission cost
 - TIGER Guidelines
- Roadway Safety Costs: Traffic flow diversions increases the roadway expected crash costs
 - TIGER Guidelines
- Travel Time Costs: Drive/Passenger value of time
 - TIGER Guidelines

Measuring the Benefit Cost Ratio

The recipe:

- Start with FRA template
 - Implementation Cost
 - Maintenance Cost
 - Safety Benefits
 - Salvage Value
 - Interest Rate
 - Service Life
- Identify the Project Type
 - Grade Separation
 - Installing Warning Devices
 - Closing a crossing
- Add the missing benefits/costs
 - Emission/noise pollutions
 - Roadway Safety Costs
 - Roadway Maintenance Costs
 - Travel Time Costs

FRA Benefit Cost Calculation Template

Railroad-Highwav Grade Crossing Handbook—Revised Second Edition

Figure 58. Sample Benefit-to-Cost Analysis Worksheet

Ev:	aluation No.: Project No.: Date:		
1.	Initial implementation cost, I:	8	100.00
<u>م</u> .	before project implementation:	s	10
4	Annual operating and maintenance costs after project implementation: Net annual operating and maintenance	s	1,00
	costs, K (#3 - #2):	s	90
5.	Annual safety benefits in number of accidents prevented: Severity Actual - Expected = Annual a) Fatal accidents (fatalities) 0 - 0 = 0 b) Injury accidents (injuries) 4 - 2 = 2 c) PDO accidents (involvements) 5 - 3 = 2	Benefit - -	
6.	Severity Cost a) Fatal accident (fatality) \$ 500,000 b) Injury accident (involvement) \$ 2,000		
7.	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
8. 9. 11.	Service life, n: <u>20</u> _vrs 10. Interest rate: <u>10%</u> = Salvage value, T: <u>\$5,000</u> (Annual compounding interest) EUAC Calculation: Capital recovery factor, CR = <u>0,1175</u>	- <u>.10</u>	
	Sinking fund factor, $SF = 0.0175$ EUAC = I (CR) + K - T (SF)		
12. 13.	$= 100.000 (0.1175) + 900 \cdot 5.000 (0.0175) = 12.562$ EUAB Calculation: EUAB $= B = 104.000$ B/C = EUAB/EUAC = 104.000 / 12.562 = 8.3		
14.	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
	= 100.000 + 900 (8.5136) - 5.000 (0.1486) = 106.919		
1.0			

Source: Railroad-Highway Grade Crossing Handbook, Second Edition. Washington, DC: U.S. Department of Transportation, Federal Highway Administration, 1986.

160

Warning Device – Case Study

- Crossing: 630975D
- Railroad: CSX
- Location: N. First St., Maxton
- Warning Device: Crossbucks
- AADT: 1,564
- Truck Percentage:3%

Warning Device Info

Construction Cost:

- Historical 2004-2014;
- Adjusted for inflation;
- Average inflated adjusted: \$223,564

Maintenance Cost

- Based on 2010 Maintenance Rate Schedule

Crash Reduction Factors

- Highway Safety Manual
- Crash Modification Clearing House

• Device Life:

- 17 years (NCDOT Data)

Warning Device – BCA

- Positive greater than 1 benefit cost ratio;
- Warning Device has safety benefits and is more than the construction and maintenance cost of the project;

1 Ini	tial implementa	tion	cost. I:						Ś	218,195
2 An	nual operating a	and n	naintenance	e costs before	nroiect imple	menta	tion:		Ś	100
3 An	3 Annual operating and maintenance costs after project implementation:								Ś	3,848
4 Ne	t annual operati	ing a	nd mainten	ance costs. K	(#3 - #2):				Ś	3,748
5 An	5 Annual safety henefits in number of accidents prevented:									-,
	Severity				Before (expe	ected) -	After (Ex	ected) =	Ann	ual Benefit
a)	Fatal accidents	s (fat	alities)		0.0100	-	0.0033	=		0.0067
, b)	Injury accident	、 ts (in	juries)		0.0369	-	0.0122	=		0.0247
c)	PDO accidents	(inv	olvements)		0.0716	-	0.0236	=		0.0479
6 Ac	cident cost value	es								
	Severity								Cost	:
a)	Fatal accident	(fata	lity)						\$	5,143,870
b)	Injury accident	t (inj	ury)						\$	146,064
c)	PDO accident ((invo	lvement)						\$	34,234
7 An	nual safety ben	efits	in dollars sa	aved, B:						
(5a) x (6a) =	\$	5,143,870	x	0.0067	=			\$	34,488
(5b) x (6b) =	\$	146,064	х	0.0247	=			\$	3,608
(5c) x (6c) =	\$	34,234	х	0.0479	=			\$	1,641
								Total	\$	39,738
8 Se	rvice life, n:		17	yrs						
9 Sal	vage value, T:	\$	1							
10 Int	erest rate:		8%							
11 EU	AC Calculation:									
Ca	pital recovery fa	ictor,	CR	=						0.1096
Sin	iking fund factor	r, SF		=						0.0296
EU	AC = I (CR) + K - 1	T (SF)	=						\$	27,669
12 EU	AB Calculation:	EUAE	8 = B =						\$	39,738
13 B/0	C = EUAB/EUAC	=								1.44
14 PW	VOC Calcuation:									
Pre	esent worth fact	or, P	W =	6 DU						9.1216
Sin	igle payment pr	esen	t worth fact	or, SPW=						0.2703
PM	VOC = I + K (PW)	- T (S	PW)						Ş	252,383
45 514										
15 PW	VOB Calculation:								ć	262.471
PW	VOB = B (PW) =	_							Ş	362,471
16 B/0	C = PWOR/PWO	C =								1.44

Warning Device – Results Comparison

GRADEDEC RESULTS	Before	After	Reduction	\$ Benefit
Fatal	0.009991	0.003297	0.006694	\$ 34,433.07
Injury	0.035919	0.011853	0.024066	\$ 3,515.18
PDO	0.08169	0.026958	0.054732	\$ 1,873.70
		GradeDec Annua	I Safety Benefit	\$ 39,821.94

M&N RESULTS	Before	After	Reduction	\$ Benefit
Fatal	0.01	0.0033	0.0067	\$ 34,463.93
Injury	0.0369	0.0122	0.0247	\$ 3,607.78
PDO	0.0716	0.0236	0.0480	\$ 1,643.23
		M&N Annua	I Safety Benefit	\$ 39,714.94

A New Cost-Benefit Methodology for Highway-Railway Grade Crossing Safety Programs

Closure 1 – Case Study

- Crossing: 630266X
- Railroad: NCVA
- Location: Cemetery St, Roxobel
- Warning Device: Corssbucks
- AADT: 385
- Truck Percentage: 5%

Closure – Info

- Closure Cost: \$25,000
- Traffic Diversion Costs: FHWA 2000 Pavement, Congestion, Crash, Air Pollution, and Noise Costs for Illustrative Vehicles Under Specific Conditions (Cents/Mile, CPI Adjusted)

Vehicle Class/Highway Class	Pavement	Congestion	Crash	Air Pollution	Noise	Total
Autos/Rural Interstate	0.00	1.05	1.32	1.54	0.01	3.93
Autos/Urban Interstate	0.14	10.40	1.61	1.80	0.12	14.05
40 kip 4-axle S.U. Truck/Rural Interstate	1.35	3.31	0.63	5.20	0.12	10.61
40 kip 4-axle S.U. Truck/Urban Interstate	4.19	33.05	1.16	6.06	2.03	46.48
60 kip 4-axle S.U. Truck/Rural Interstate	7.56	4.41	0.63	5.20	0.15	17.96
60 kip 4-axle S.U. Truck/Urban Interstate	24.44	44.06	1.16	6.06	2.27	77.99
60 kip 5-axle Comb/Rural Interstate	4.46	2.54	1.19	5.20	0.23	13.61
60 kip 5-axle Comb/Urban Interstate	14.18	24.83	1.55	6.06	3.71	50.33
80 kip 5-axle Comb/Rural Interstate	17.15	3.01	1.19	5.20	0.26	26.80
80 kip 5-axle Comb/Urban Interstate	55.22	27.08	1.55	6.06	4.10	94.01

A New Cost-Benefit Methodology for Highway-Railway Grade Crossing Safety Programs

Closure 1 – BCA

- Benefit/Cost ratio close to zero;
- Closing the crossing has safety benefits;
- The traffic diversion has a significant cost;

1	1 Initial implementation cost, I: \$ 25,00 2 Annual constraints and unit to page costs before project implementation; \$ 2000								25,000		
2	2 Annual operating and maintenance costs before project implementation: \$ 2									2,032	
3	Ann	annual operating a	nu ma	maintance	costs after pr	uject implem	entatio	m.		ې د	-
4	App	annual operati	ng anu	number	ance costs, K (#3 - #2).				Ş	(2,052)
Э	Ann	Soucerity Dene		number c	or accidents pr	Poforo (ovo	ot o d \	After/Fu	acted) –	A	al Donofit
	2)	Severity	(fatal)	tion)		o oo11	ected) -	Arter (Ex	=	Anint	
	d)	Fatal accidents	(Idtdii	ries)		0.0011	-	0.0006	-	0.0	00442069
	D)	Injury accidents	S (IIIJU	(omonto)		0.0068		0.0040	-	0.0	02005567
	C)	PDO accidents	(111001)	vernents)		0.0149	-	0.0087	-	0.0	00100331
c	A	dent cost value									
0	ALL	Severity	:5							Cost	
	2)	Sevency Fotol assident	(fatalit							cost	F 142 970
	a) b)	Inium assident	liniun	(¥)						ې د	145,070
	0)	BDO accident (involv	y)						ç	24 224
	C)	PDO accident (IIIVOIV	ement)						Ş	54,254
7 2	Ann	ual cafoty bong	fite in	dollars sa	wod P:						
/.d.	Ann (Ea)	rual safety bene	ents in	142 970	iveu, в.	0.00044200	-			ć	2 274
	(5d) (Eb)	x (0d) =	s s c	145,670	X	0.00044209	-			Ş ¢	2,274
	(50)	x (00) -	ې د	24 224	×	0.00280333	-			ې د	410
	(50)	x (oc) =	Ş	54,254	x	0.00010055	-		Total Banad	Ş ¢	209
7 6	Turk								Total benef	Ş	2,095
7.0	IIdi	Addional Annu	sts al Voh	ilo Miloc	100 662						
		Autorial Annu	and In	fractructu	109,005	interstate)					4 209
		Additional Use	anu m	inastructi	ire cost (rurai	merstate)				ې د	4,506
		Additional Ose	TCOSE		5774 745					Ş	04,155
		Additional Annu		k Willes	5771.745	amb /Dural Ini	to retato			*	70 543
		Additional All	and In	fractruct	ure Cest (rure)	interstate)	leislale)		÷.	70,342 E 04E
		Environmental	anu m		ire cost (rurai	merstate)				ې د	5,945
		Ple Closule De	Tay CO:	si			-		tional Costa	\$ ¢	153.049
0	Son	vica lifa n:		20	WEG				tional Costs	>	152,940
0	Salv	vago voluo. T:	ć	50	yı s						
10	Jato	rage value, 1.	Ş	- 00/							
11	ELIA	C Calculation:		0/0							
11	Con	ital recovery fa	ctor C	D	-						0 0000
	Cap	ing fund factor	CE CE	IX	_						0.0000
	ELIA		, JI - (SE) -		-					ć	152 127
	LOA	c = r(cR) + R = r	(31) =							Ŷ	133,137
12	FΠΔ	B Calculation: F	ΠΔR =	B =						Ś	2 893
12	B/C		-	0-						Ŷ	0.02
1.5	5,0	- LOAD, LOAC -	-								0.02
14	PW/	OC Calcuation:									
	Pre	sent worth fact	or PW	=							11 2578
	Sinc	le navment nre	sent v	vorth fact	or SPW=						0.0994
	PW/	DC = I + K (PW)	- T (SP)	N)	0., 51					Ś	1 723 978
		00 H K (I W)	1 (3/1	,						Ŷ	1,123,370
15	PW/	OB Calculation:									
15	PW	OB = B(PW) =								Ś	32,568
16	B/C	= PWOB/PWO	C =							*	0.02
	.,.		-								

Results Comparison: Closure Case Study 1

- GradeDec B/C 1.519
- M&N B/C 0.019
- Discussion:
 - Traffic Diversion:
 - GradeDec reassigns traffic to crossings based on proximity as determined by railroad milepost – not based upon the surrounding roadway network.
 - Travel Time, Delay and Related Costs
 - All benefits due to reductions in travel time, delay and related costs in GradeDec are calculated at the crossing. Costs due to traffic diversions are not captured in the B/C analysis.

Objective a Data Driven Method

Data Driven		State of Practice
Measure the cost of a highway-rail grade crossing crash		No major frame work before NCHRP-755
Use the crash costs to screen for high risk crossings	\bigotimes	Use the Hazard index to screen for high risk crossings
Perform Benefit Costs Analysis (BCA) for an individual crossing safety improvement project		Looks only at the safety benefits
Prioritize safety improvement projects under budget constraints		

Project Prioritization – Extending the New Method

- The new method uses a cost based approach for screening of high-risk crossings;
- The new method expands the benefit cost analysis beyond the construction costs and safety benefits;
 - The new method monetizes external costs and benefits

What's next?

- Expand the cost-benefit domain
- Look at corridors
- Add optimization capability to select project that maximize the expected benefits under budget constraints
- Measure the Economic Impacts of safety improvements

Objective a Data Driven Method

Data Driven		State of Practice
Measure the cost of a highway-rail grade crossing crash		No major frame work before NCHRP-775
Use the crash costs to screen for high risk crossings	${\longleftrightarrow}$	Use the Hazard index to screen for high risk crossings
Perform Benefit Costs Analysis (BCA) for an individual crossing safety improvement project		Looks only at the safety benefits
Prioritize safety improvement projects under budget constraints	•••	No common consensus, Anticipated NCHRP project;

Moffatt & Nichol | 2014 GLXS

Moffatt & Nichol | 2014 GLXS

Measuring the cost elements

Primary Effect costs

- Injury and Fatality cost;
 - 2011 Standardized Crash Cost Estimates for North Carolina
- Highway vehicle damage;
 - Federal Railroad Administration (FRA) Table 6180.57
- Rail Infrastructure Damage;
 - Federal Railroad Administration (FRA) Table 6180.57
- Rail Equipment Damage;
 - Federal Railroad Administration (FRA) Table 6180.57
- HazMat release cost;
 - Comparative Risks of Hazardous Materials and Non-Hazardous Materials Truck Shipment

Secondary Effect Costs

- Delay and Rerouting Costs
 - NCHRP 755
 - TIGER Guidelines
- Supply Chain Costs
 - Freight Analysis Framework
 - FHWA (The Impact of Congestion on Shippers' Inventory Costs)

Screening for high risk crossings: Where is the next improvement candidate?

- The objective of the network screening process is to identify potential improvement sites:
 - Investigative Index
 - New Hampshire Hazard Index
 - ...
 - Expected crash costs can also be used as a mean for network screening (cost based)
 - Is more tangible;
 - Can be used for across the mode screening of potentially hazardous location (single unit of measurement for highway and highway-rail crashes)
- Expected crash cost = crash probability * (primary effect costs + secondary effect costs)

Closure 2 – Case Study

- Crossing: 720383S
- Rail Road: NS
- Location: Old Pisgah Hwy, Asheville
- Warning Device: Crossbucks
- AADT: 73
- Truck Percentage: 0%
- Closure Cost: \$25,000

Closure 2 – BCA

- Benefit-Cost Ratio is greater than 1
- Closing the crossing has safety befits
- The traffic diversions costs are less than safety benefits

1	1 Initial implementation cost, I: \$ 25,000											
2	2 Annual operating and maintenance costs before project implementation: \$ 100											
3	Anr	nual operating a	and n	naintenance	costs after pi	roject implem	entatio	on:		\$	-	
4	Net	annual operati	ing ai	nd maintena	ance costs, K (#3 - #2):				\$	(100)	
5	5 Annual safety benefits in number of accidents prevented:											
		Severity Before (expected) - After (Exected) =									Annual Benefit	
	a)	Fatal accidents	s (fat	alities)		0.0010	-	-	=	0.0	00975644	
	b)	Injury accident	ts (in	juries)		0.0046	-	-	=	0.004604047		
	c)	PDO accidents	(inve	olvements)		0.0100	-	-	=	0.0	10020663	
6	Accident cost values											
		Severity								Cost		
	a)	Fatal accident	(fata	lity)						\$	5,143,870	
	b)	Injury accident	t (inji	ury)						\$	146,064	
	c)	PDO accident (invo	lvement)						\$	34,234	
7.a.	Anr	nual safety bene	efits	in dollars sa	ived, B:							
	(5a)	x (6a) =	\$	5,143,870	x	0.00097564	=			\$	5,019	
	(5b)	x (6b) =	\$	146,064	х	0.00460405	=			\$	672	
	(5c)	x (6c) =	\$	34,234	x	0.01002066	=			\$	343	
									Total Benef	\$	6,034	
7.b	Traf	fic Diversion Co	sts/E	Benefits								
		Additional Ann	nual	Vehile Mile	2,665							
		Environmenta	l and	Infrastructu	ure Cost (rural	interstate)				\$	105	
		Additional Use	r Co	st						\$	1,559	
		Addional Annu	ual Tr	uck Miles	0							
		Additional Ann	nualT	ruck Cost (6	0 kip 5-axle C	omb/Rural In	terstate	e)		\$	-	
		Environmenta	l and	Infrastructu	ure Cost (rural	interstate)				\$	-	
		Pre Closure De	elay C	Cost						\$	-	
							1	otal Addi	tional Costs	\$	1,663	
8	Ser	vice life, n:		30	yrs							
9	Salv	vage value, T:	\$	-								
10	Inte	erest rate:		8%								
11	EUA	AC Calculation:										
	Cap	ital recovery fa	ctor,	CR	=						0.0888	
	Sinking fund factor, SF =										0.0088	
	EUA	AC = I (CR) + K - 1	Г (SF)	=						\$	3,784	
12	EUA	AB Calculation: I	EUAB	= B =						\$	6,034	
13	B/C	= EUAB/EUAC =	=								1.59	
14	PW	OC Calcuation:										
	Pre	sent worth fact	or, P	W =							11.2578	
	Sing	Single payment present worth factor, SPW=								0.0994		
	PW	OC = I + K (PW)	- T (S	PW)						\$	42,601	
15	PW	OB Calculation:										
	PW	OB = B (PW) =								\$	67,931	
16	B/C	= PWOB/PWO	C =								1.59	

Prioritization of safety improvement projects under budget constraints

- Current methods focus on metropolitan-only or small community-only benefits
- They don't generally use the same metrics for measuring the costs and the benefits
- Using multiple metrics in screening and benefit cost analysis leads to unnecessarily complex project prioritization approaches;
 - Exposure indices identify hazardous spots (with no associated costs)
 - Benefit cost method looks at the Safety Related benefit Cost ratio
 - Other decision-making criteria are considered through scorecards, multi-dimensional comparison and ...

