Preliminary Analysis of LED Enhanced Signs at a Passive Rural Level Crossing

Adrian Hellman Systems Safety and Engineering Division

August 6, 2014

Volpe The National Transportation Systems Center Advancing transportation innovation for the public good

U.S. Department of Transportation Office of the Secretary of Transportation John A. Volpe National Transportation Systems Center

Introduction

- Research sponsored by the
 US DOT Federal Railroad
 Administration Office of
 Research and Development
- Research Objective:
 Measure the effect of flashing LED signs on motor vehicle speed profiles at a level crossing approach

Background

- □ Almost one-half of public level crossings in the US are passive
- Approximately 35%-40% of all incidents, injuries, and fatalities occur at these crossings
- However 90% of rail-highway traffic is found at active level crossings

Public Level Crossing Incident and Casualty Statistics 2008-2012							
	Number of Crossings	Incidents	Injuries	Fatalities			
Active	67,036	969	500	85			
Passive	62,527	596	277	59			
Totals	129,563	1,565	777	144			

Passive Level Crossing Crash Mechanisms

- Why are drivers not stopping at passive level crossings when trains arrive?
- Would enhanced signage at these crossing reduce the number?

Public Passive Level Crossing Crash Mechanisms 2008-2012

LED Sign Technology Study

Research Objective: Measure the effect of flashing LED signs on motor vehicle speeds at a level crossing approach

Location Criteria:

- Passive level crossing
- No STOP sign control
- No nearby highway intersection

□ **Approach:** *Before/After* analysis

- Phase 1 Baseline
- Phase 2 LED Crossbuck
- Phase 3 LED Crossbuck and Advance Warning

Study Location: Swanton, Vermont

Level Crossing Vicinity

Distance from Xing (ft.)		Si	ign		
	Crossbuck	YIELD	Advance Warning		
Northbound Approach	14.5	53.5	564		
Southbound Approach	17	85.5	238		

Aerial View of Crossing Locale

Northbound Approach Prior to Sign Installation

Test Schedule

Phase 1 (Baseline)			
	Start Date	End Date	Total Days
Novelty Period	6/24/2013	7/26/2013	33
Data Collection	7/27/2013	8/28/2013	33
Phase 2 (Crossbuck)			
	Start Date	End Date	Total Days
Novelty Period	8/29/2013	9/25/2013	28
Data Collection	9/26/2013	10/8/2013	13
Phase 3 (Crossbuck	and AWS)		
	Start Date	End Date	Total Days [*]
Novelty Period	10/9/2013	10/15/2013	7
Data Collection	10/16/2013	10/28/2013	13
*NT 1, 11 ,	1 4 1		

^{*}Novelty period less than 4 weeks

FRA Mobile Driver Feedback Device

MDFD Deployment

- 82.5 ft. North of Railroad Centerline
- 15 ft. from the Edge of Lakewood Drive

View from Northbound Approach to Crossing

FRA MDFD as Deployed

Detector Configuration

Vehicle Speed Profiles of Northbound Traffic Were Measured

Sign Installation

Crossbuck Signs Activated on 8/29/13

Advance Warning Signs Activated on 10/9/13

Views From Northbound Approach to Level Crossing

Results for LED Crossbuck Signs

Baseline (n=1486) and LED Crossubck (n=527) Comparison - Daytime									
Detector Name	Distance from Crossing (feet)	Baseline Mean Speed (mph)	LED XBuck Mean Speed (mph)	$\overline{x}_{BL} - \overline{x}_{CL}$	₃ <i>t</i> -value	<i>p</i> -value	Significant*		
Detector 1	202.5	31.45	31.92	-0.47	-1.596	> 0.10	NO		
Detector 2	137.5	28.45	28.87	-0.42	-1.390	> 0.15	NO		
Detector 3	72.5	25.42	25.32	0.10	0.285	> 0.40	NO		
Detector 4	12.5	23.05	22.64	0.41	1.202	> 0.20	NO		

*Significant at 95% Confidence Level

Baseline (n=282) and LED Crossbuck (n=132) Comparison - Nighttime									
Detector Name	Distance from Crossing (feet)	Baseline Mean	Phase LED Xbuck Mean	$\overline{x}_{BL} - \overline{x}_{CB}$	<i>t</i> -value	<i>p</i> -value	Significant*		
	crossing (reet)	Speed (mpn)	Speed (mph)						
Detector 1	202.5	32.97	30.02	2.95	3.651	< 0.001	YES		
Detector 2	137.5	30.55	27.46	3.09	4.003	< 0.001	YES		
Detector 3	72.5	27.56	24.24	3.32	4.242	< 0.001	YES		
Detector 4	12.5	24.92	22.03	2.89	3.786	< 0.001	YES		

*Significant at 95% Confidence Level

Rate of Mean Speed Decrease Across Detection Zone

Daytime

Vc/pe 13

Vehicle Class Speed Study

- Used to normalize for seasonal changes in the vehicle composition
- Baseline: 7/27/13 8/28/13
- LED Crossbuck: 9/26/13-9/30/13
- One Saturday, Sunday, and Monday were selected from each phase

Class	A (%)	B (%)	C (%)	D (%)	E (%)	F (%)	G (%)	H (%)
Baseline (n = 701)	90.73	6.42	0.57	0.57	0.29	0.14	1.14	0.14
LED Crossbuck (n = 501)	89.22	8.38	0.80	0.60	0.00	0.00	0.80	0.20

- A Light Vehicle
- **B** Light Vehicle with Trailer
- **C** Commercial Vehicle
- **D** Commercial Vehicle with Trailer
- E Bus
- **F** Recreational Vehicles
- **G** Motorcycles
- H Other

Challenges – Changes to Experimental Conditions

October 1, 2013 – Swanton Highway Department Painted a Double Yellow Line on Lakewood Drive

October 9, 2013

July 18, 2013

Significant Effect at Night of 2.13-2.79 MPH!

Comparison of Phase 2 mean speeds before and after the addition of centerline line markings – Nighttime (n=128)

Detector Number	Mean speed before (mph)	Mean speed after (mph)	∆ Speed (mph)	t _{stat}	Significant $\alpha = 0.05$
1	29.84	31.97	2.13	-2.076	YES
2	27.36	29.38	2.02	-2.073	YES
3	24.18	26.62	2.44	-2.456	YES
4	22.00	24.79	2.79	-2.921	YES

Major Findings

- A statistically significant decrease in mean vehicle speed of 1.5-2 mph was observed between Phases 1 and 2 nighttime data samples.
- Little change in mean vehicle speed was observed between the other data samples
 - Phases 1 and 2 daytime (slight decrease in speed)
 - Phases 1 and 3 daytime and nighttime (slight increase in speed during the day)
- There was a statistically significant increase in the number of vehicles moving < 12 mph within ~75 ft. of the level crossing
- Rate of mean vehicle speed decrease across detection zone increased for Phases 2 and 3
- The addition of the highway centerline lane markings may have resulted in an increase in mean vehicle speeds.

Adrian Hellman | Electronics Engineer US DOT | OST-R | Volpe Center

Technical Center for Infrastructure Systems and Engineering Systems Safety and Engineering Division, RVT-62 55 Broadway, Kendall Square | Cambridge, MA 02142 Office: 617-494-2171|Fax: 617-494-2596 Email: <u>adrian.hellman@dot.gov</u>

