

Escanaba Tie Treating Plant Remediation

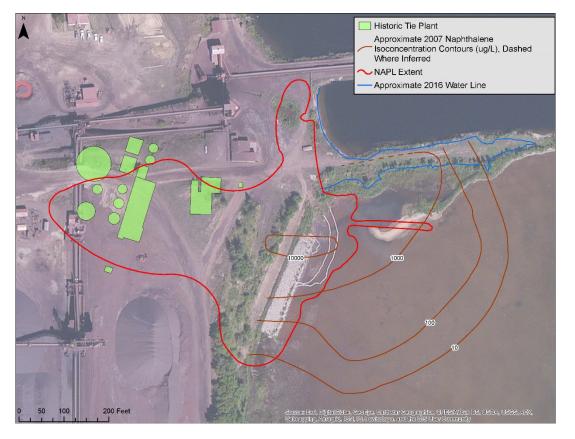
Construction of Remedy to Address NAPL Migration to Great Lakes

Railroad Environmental Conference November 2016

Agenda

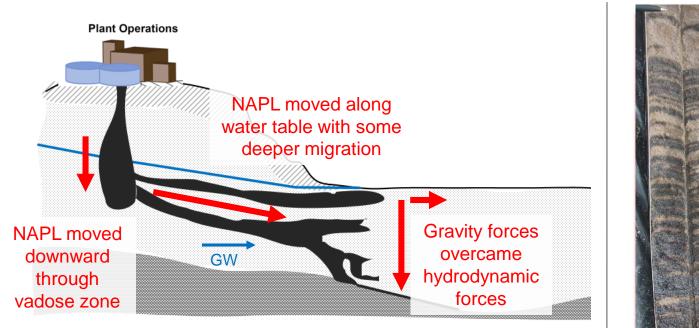
- Site Background
- NAPL Impacts
- Basis of Design
- Passive Remedy Description
- Early Performance Monitoring

Site Background


- Historic tie treating plant upland from Lake
 Michigan
- Operating ore dock owned by Canadian National
- Creosote Seep on shoreline observed in 2005

 Both onshore and offshore NAPL impacts
- Interim measures taken to reduce surface impacts
- Final remedy design accounted for NAPL migration and groundwater discharge to surface water interface
 - Naphthalene <11 µg/L at GSI interface
- Michigan Department of Environmental Quality approved remedy construction in March 2015 as a voluntary action by UPRR

Site Overview

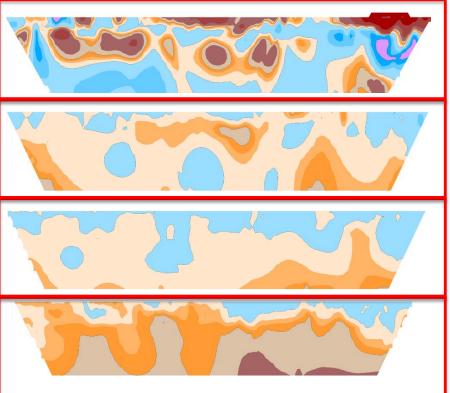


Cross Section of NAPL Impacts

Shoreline NAPL Profile

adr. TARGOST relative response profile for NAPL impacts Little Bay De Noc

Naphthalene = 11 µg/L groundwater contour


and and

Sediment Resistivity Profiles

Basis of Design

Isoconcentration contours suggest naphthalene degradation during GW transport

Naphthalene plume extends approximately 400 feet from leading edge of NAPL beneath sand flat

Model forecasts 400-day GW travel time till Naphthalene degradation below 11 ug/L

Approximate 2007 Naphthalene Isoconcentration Contours (ug/L), Dashed Where Inferred

∼NAPL Extent

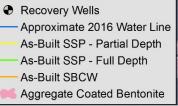
Approximate 2016 Water Line

Remedy Overview

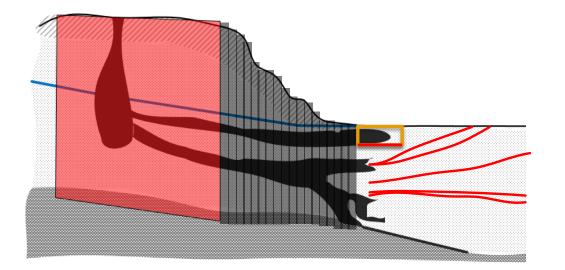
Slurry walls up to

60 feet deep

NAPL Recovery System


100

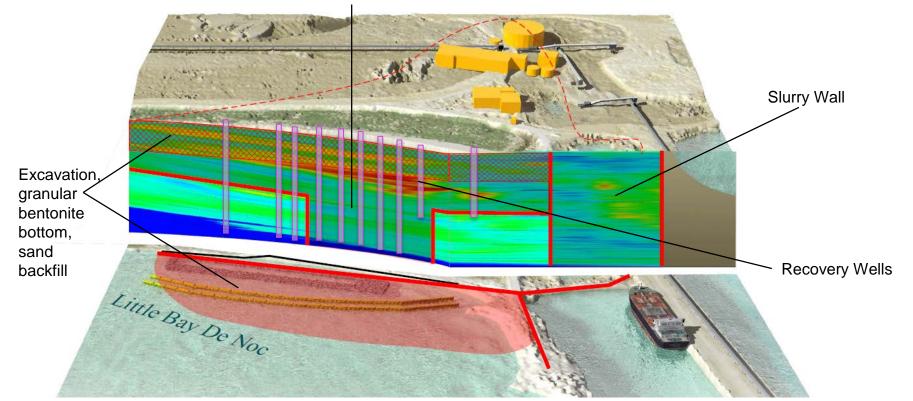
200 Feet

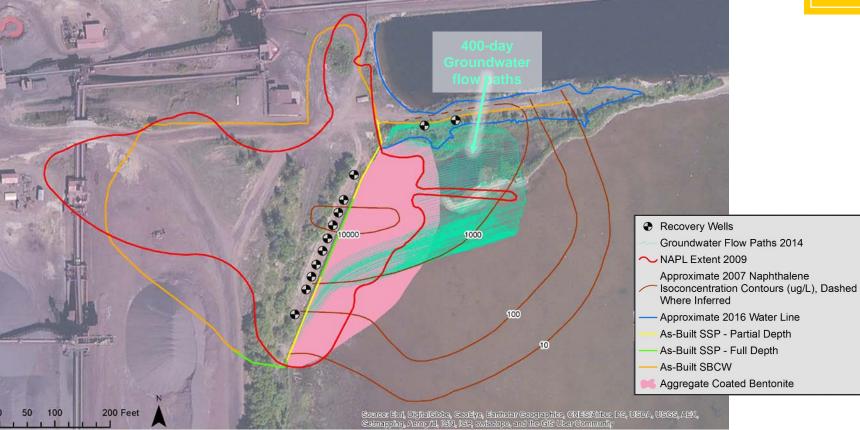

5 foot excavation over one acre
6 inch bentonite layer bottom, sand backfill

Sheet pile wall (partially hanging to allow for groundwater discharge)

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, ONES/Alirbus DS, USDA, USGS, AEX, Getmapping, Aarogrid, TGN, IGP, switsstopo, and the GIS User Community

Remedy in Profile




- Slurry wall constructed around upland impacts where constructible
- Sheet pile wall constructed in upland on slopes too steep for slurry wall
- Temporary shoring used to support five foot sediment excavation
- Aggregate coated bentonite placed in excavation bottom to elongate groundwater flow paths

Shoreline Remedy in Profile

Sheet Pile Wall

Remedy Simulations

Overall Lessons Learned

- Working on Canadian National property. Cooperation of CN staff
- Site transportation got complicated with upland and in water work performed at the same time
- Keep your land owner happy!

Slurry Wall Construction Lessons Learned

60-Foot Continuous Trencher

Bulk Bentonite Added For Lubrication

Bulk Bentonite Metered into Trench

Excess slurry on spit

- "Swell" housekeeping
- Trencher boom stuck 40 feet in ground, extracted but chain left in ground
- Trencher as second tier subcontractor
- Slurry in water in take line for facility

Dredging in Lake Michican Lessons Learned

Installing Temporary Perimeter Sheet Pile Wall

Finger Piers Constructed for Access

Active Dredging

Loading Spoils for Transport To Dewatering Area

- Both MDEQ and COE permit required
- No turbidity releases
- Contractor behind schedule.
- We were still placing backfill in December in the Upper Peninsula of Michigan!

Sheet Pile Wall Lessons Learned

Sheet Pile Setup on Shoreline

Vibratory Hammer Used to Install Sheet Piles

Sheets Extend Above Historic High lake Level

Shoreline Picture

Specification for a secondary seal on interlocks. Contractor offered as adder, not really cost effective option

Sediment Dewatering and Transport Lessons Learned

Dewatering Pad Constructed

Dredge Spoils Loaded in Dewatering Area

Dredge Spoils Dewatering

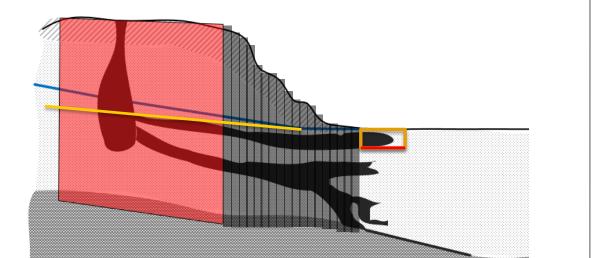
After Dewatering, Sediment Loaded for Offsite Disposal

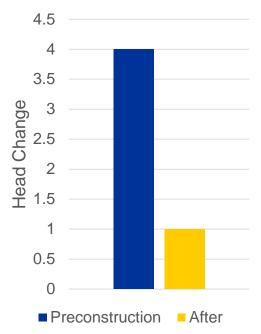
- Drying tests performed by CH2M and included in specification to show how easily sediment dewatered
- Both excess swell from slurry wall contraction and sediment disposed offsite

Granular Bentonite Layer Construction Lessons Learned

Upland trial

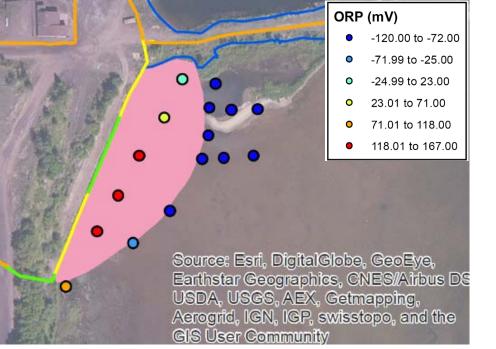
Granular Bentonite Placement

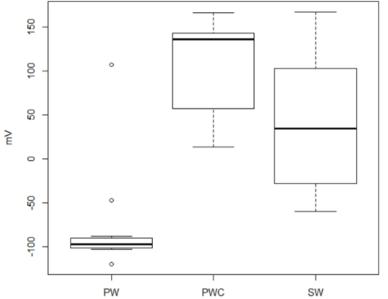



- Specifications require "low energy" placement of granular bentonite, but that can mean many things
- Confirming specification by survey difference was difficult
- Confirmation cores were collected to verify placement

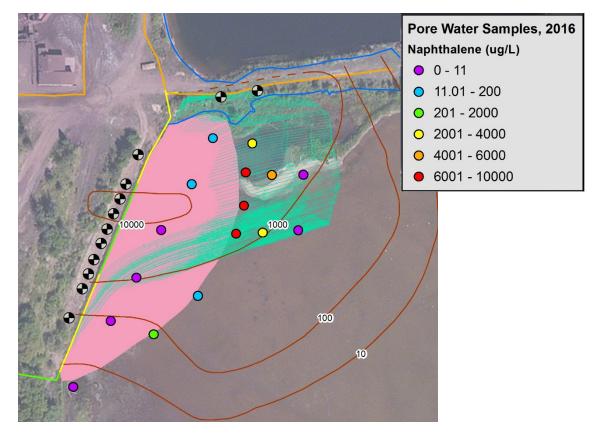
Granular Bentonite Placement

Confirmation Core





Defined Groundwater Venting Zone



GSI Monitoring, UPRR Escanaba - Surface and Pore Water ORP

Spring 2016 Naphthalene Results

- Sampled sediment pore water at GSI interface
- Naphthalene concentration results:
 - Low over cap
 - High at edge of cap
 - Decreasing along GW flow path after cap
- Naphthalene > GSI
 - 400 feet preconstruction
 - <100 feet 6 months after</p>
 - Results already exceed groundwater model travel time predictions

Before and After Lessons Learned

Discovery

Interim Action

Completed Project

- The Escanaba Tie Treating Plant remedy in summary is:
 - Sustainable no groundwater pumping or discharge, no energy consumption
 - Cost effective high capital cost, low annual O&M for monitoring
 - Provides treatment

 the biodegradation that naturally occurs treats naphthalene discharge