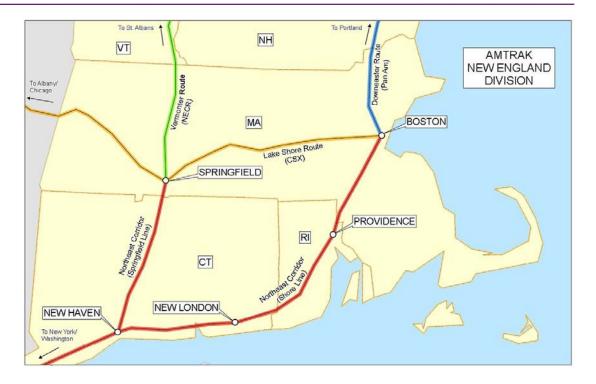


Dissecting Proprietary Stormwater Treatment BMPs to Develop Practical Solutions – Unbiased Research and Case Studies


Railroad Environmental Conference University of Illinois at Urbana-Champaign

October 24, 2017

Outline

- Introduction
- Need and problem
- Study approach
- Device selection
- Device installation

► Need:

- Amtrak contractor proposed an alternate manufactured (in-ground) stormwater treatment device (Device) for a project.
- Adequate information was not available to compare the two Devices in order to select the Device with the best performance.

Problem:

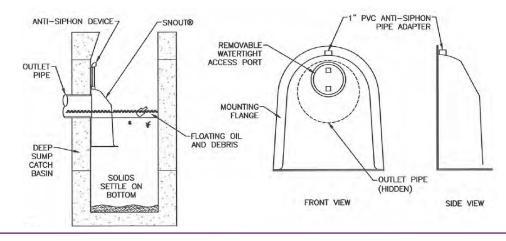
 Selecting the most cost-effective and easy to maintain technology for a stormwater treatment Device can be difficult.

Study Goals:

- Conduct an unbiased evaluation of stormwater treatment Devices.
- Better understand how to select these Devices for use at Amtrak facilities.
- Develop cost-effective solutions that can be readily implemented at existing Amtrak facilities as a "standard retrofit".
- Provide guidance for good engineering design based on stormwater needs.

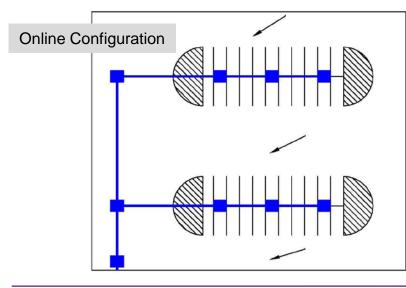
Problem Overview

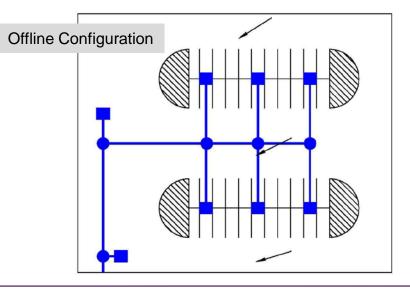
- Manufactured stormwater treatment Devices and supporting performance data:
 - Can vary significantly
 - Can be confusing to owners, designers, and contractors
 - Can be misleading or incomparable


► For example:

- Does a "Downstream Defender[®]" perform the same as a "Stormceptor[®]" when sized according to the manufacturer's specifications?
- Does each Device perform the same in terms of pollutant removal (e.g., sediment capture and storage)?
- How is performance affected by installation configuration and what about bypassing high flows?
- What about maintenance needs and constraints?
- Where can you find independent research that compares various Devices?

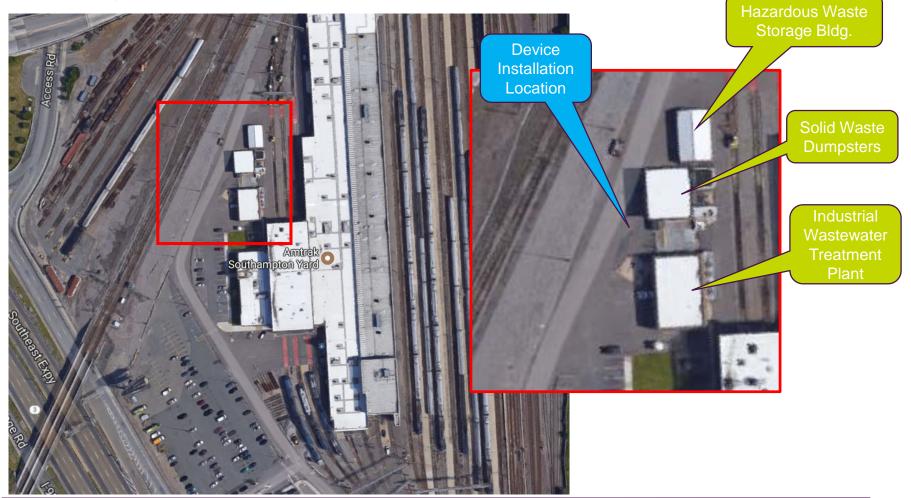
Study Approach Summary


- Review and compare available technologies and manufacturers of proprietary (manhole-style) stormwater treatment Devices
- Evaluate and compare the following:
 - Configuration options (online versus offline)
 - Pollutant removal strategy (e.g., swirl or chambered)
 - Manufacturer claimed pollutant removal rates
 - Flow rate versus storage capacity for sediment and oil
 - Maintenance considerations
 - Cost


- The UNH Stormwater Center (UNHSC) participated in the study and provided data from their research center and field site.
- ► The UNHSC data and study suggest:
 - An offline, deep sump catch basin (DSCB) with a hooded outlet <u>performs at</u> <u>least as well as similar devices</u> tested to remove TSS and TPH.
 - 73% TSS removal efficiency
 - 62% TPH removal efficiency
 - A DSCB with a hooded outlet also appears to be the most cost-effective option.

Device Selection Summary

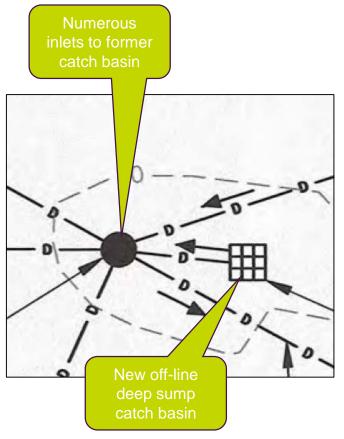
- The factors that have the greatest influence on pollutant removal efficiency from stormwater flows appear to be:
 - 1. Bypassing high flows via offline configuration or an engineered flow bypass
 - 2. Adequate sizing of the Device
 - 3. Sediment and floatable (petroleum) storage capacity (to reduce maintenance frequency)
 - 4. Ease of maintenance (proper maintenance is critical to performance)



- An off-line DSCB with a hooded outlet (SNOUT[®]) was selected as the preferred Device:
 - 5 foot diameter manhole
 - Sump depth = 3 feet below bottom of SNOUT[®]
 - SNOUT[®] model 18R
- Characteristics and benefits:
 - Materials are accessible and inexpensive (standard manhole, cover, grate and SNOUT[®])
 - Ease of maintenance same as standard catch basins
 - Solids storage capacity = ~1.45 cubic yards at recommended cleaning threshold (50% sump to outlet)
 - Petroleum storage capacity (max. static) = ~115 gallons

Device Installation Southampton Street Yard, Boston, MA

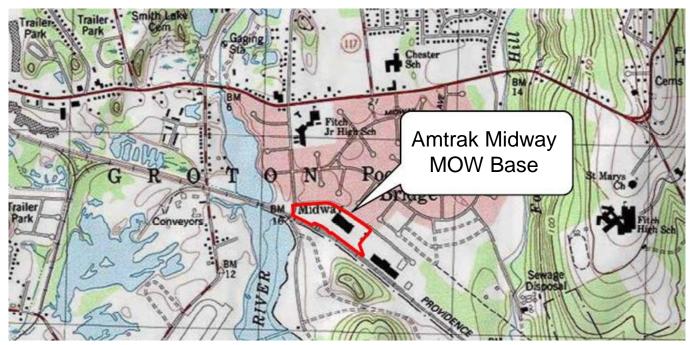
► Facility Overview



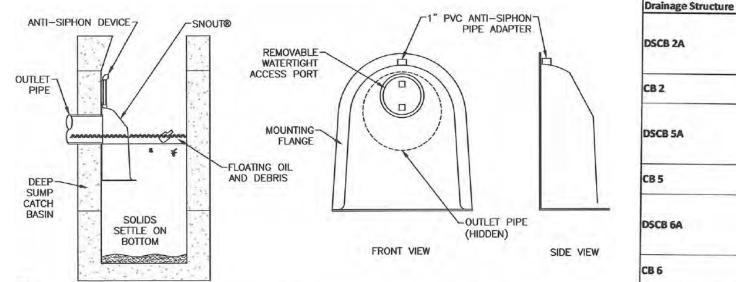
Device Installation Southampton Street Yard, Boston, MA

Retrofit during an adjacent construction project

- Offline: multiple inflows were disconnected
- DSCB with SNOUT[®]


Device Installation Southampton Street Yard, Boston, MA

► Constructed in November 2016


Facility Overview

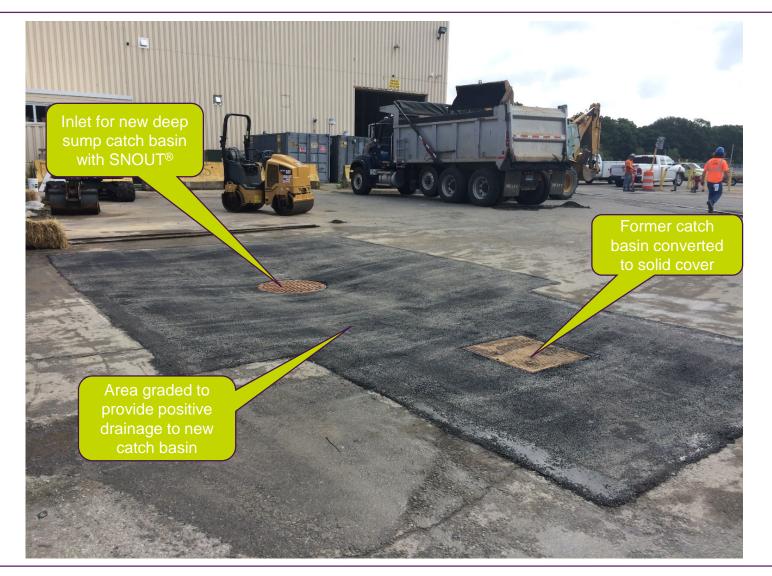
- Stormwater discharges to Poquonock River
- Little or no sumps in catch basin manholes
- SWPP and SPCC Plans in place to control pollutants and prevent spills
- Amtrak wanted to provide a greater level of water quality protection

Installed 3 DSCB with SNOUTs[®]

- Drainage areas vary ~0.25-0.5 acre
- Flows vary ~0.6-1.1 cfs (2-yr storm)

DSCB 2A	Rim	12.70
	Sump	5.62
	Structure Base	4.95
	Invert Out	9.68
CB 2	Rim	12.88
	Invert In	9.28
DSCB 5A	Rim	13.60
	Sump	6.52
	Structure Base	5.85
	Invert Out	10.58
CB 5	Rim	13.78
	Invert In	10.18
DSCB 6A	Rim	13.70
	Sump	6.62
	Structure Base	5.95
	Invert Out	10.68
CB 6	Rim	13.88
	Invert In	10.28

Feature


Elevation

Simplistic design approach and specifications

- Constructed in August 2017
 - \$39,500 construction cost

Closing Remarks

- Completed an unbiased review of manufactured (in-ground) stormwater treatment Devices
- A deep sump catch basin with a hooded outlet was selected as the preferred Device for Amtrak facilities
- Successfully installed the selected Device at two facilities

Robert Graham, Lead Environmental Specialist Amtrak, <u>grahamr@amtrak.com</u>

Richard Mohlenhoff, Manager of Environmental Programs Amtrak, mohlenr@amtrak.com

Rich Niles, Associate Project Manager

Amec Foster Wheeler, Environment & Infrastructure, <u>rich.niles@amecfw.com</u>