Evaluating Track Substructure Moduli using Seismic Surface Waves

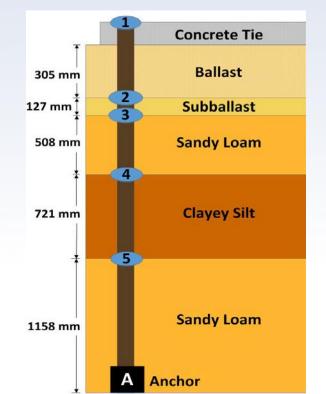
Timothy D. Stark, Stephen T. Wilk, Hugh B. Thompson II, Theodore R. Sussmann Jr., Mark Baker, & Carlton H. Ho

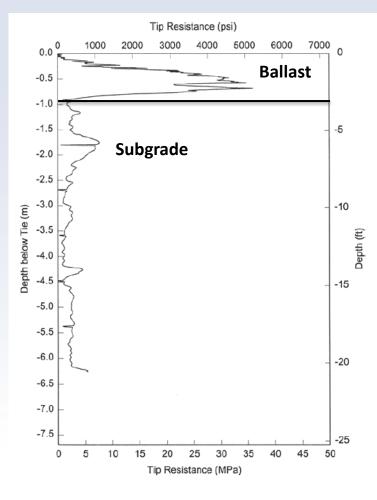
2016 International Crosstie and Fastening System Symposium Track Transitions, Crosstie Support, and Track Substructure 16 June 2016 Urbana, Illinois

- Track/Ballast Modulus
- Seismic Testing
- BSPA Applications
- Future Work
- Wireless Accelerometers

Substructure Properties

- Substructure modulus/stiffness important for track analysis
 - Track designs
 - Ballast conditions
 - Tie support
- Loose ballast/soft substructure
 - Large transient displacements
 - Increased permanent displacements





- Modulus/stiffness difficult to measure
- Current techniques

illinois.edu

- Invasive techniques (laboratory)
- Cone-Penetration Tests (CPT)
- Ground Penetrating Radar (GPR)
- Inverse Analysis (Numerical Models)
- Spectral Analysis of Surface Waves (SASW)

- Track/Ballast Modulus
- Seismic Testing
- BSPA Applications
- Future Work
- Wireless Accelerometers

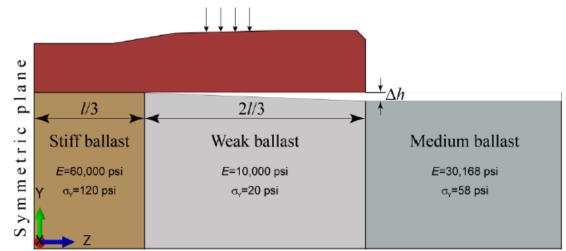
SASW Devices

- SASW devices
 - Impact hammer and accelerometers
 - Rayleigh wave velocity (V_r)
- Accelerometer spacing
 - Deeper depth \rightarrow large spacing
 - 1 ft. depth requires ~1 ft. spacing
- Focus on ballast directly under tie
 - Small spacing
 - Portable device

- **Ballast Seismic Property Analyzer (BSPA)**
- Non-invasive, portable
- Multiple applications
- BSPA orientations
 - Across tie (center)
 - Across tie (ends)
 - Parallel to tie

- Track/Ballast Modulus
- Seismic Testing
- BSPA Applications
- Future Work
- Wireless Accelerometers

- Underneath single tie
 - Modulus varies
 - Tie bending / tie failure (how does failure occur?)
 - Load distribution to ballast
- Underneath multiple ties
 - Load distribution
 - Underneath joints or welded rail
 - Rail deviations



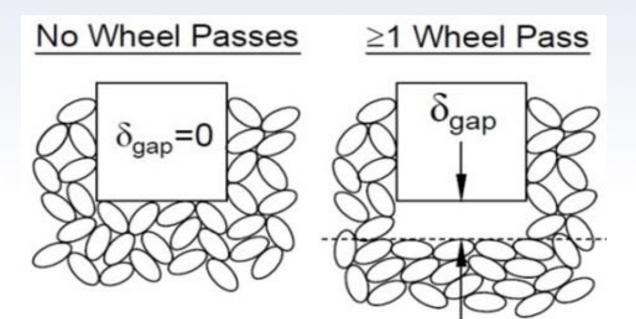
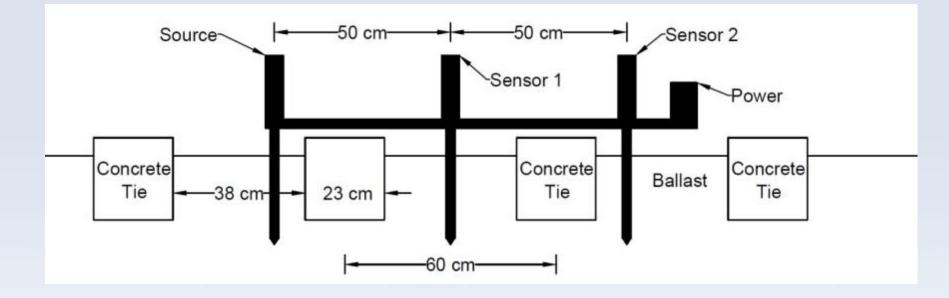


FIGURE 9 A simulated center binding condition with deteriorated ballast support.

```
Yu et al. (2015)
```


- Optimal ballast density
- Loose ballast state after tamping
 - Increased rate of settlement
 - Lower stiffness/modulus
 - Development of tie-ballast gaps
- Tie-ballast gaps can increase dynamic loads and accelerate track degradation leading to increased maintenance
- Use BSPA to determine density that limits ballast settlement



- Track/Ballast Modulus
- Seismic Testing
- BSPA Applications
- Future Work
- Wireless Accelerometers

Future Equipment

- Expand BSPA
- Measure modulus across two ties

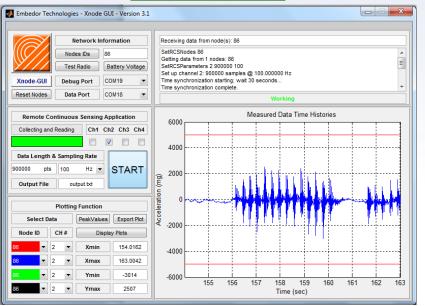
Additional Applications

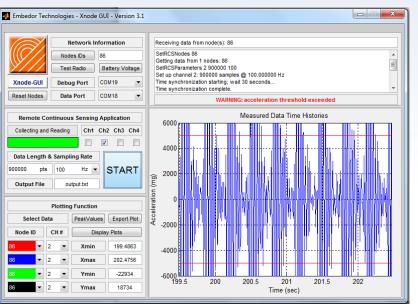
Tie integrity Both concrete and timber ties

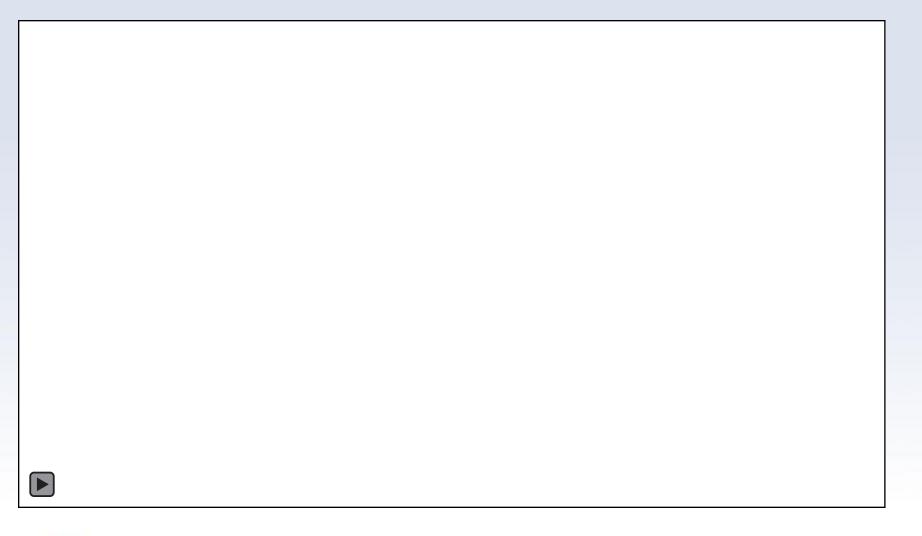
- Track/Ballast Modulus
- Seismic Testing
- BSPA Applications
- Future Work
- Wireless Accelerometers

Railroad Ballast

- Federal Track Safety Standards (FTSS) for Ballast (§213.103)
 - Transmit and distribute load to the subgrade;
 - Restrain track laterally, longitudinally, and vertically;
 - Provide adequate drainage; and
 - Maintain proper track crosslevel, surface, and alinement.




Wireless Accelerometers


Good Support

Poor Support

Wireless Accelerometers

- Federal Railroad Administration (FRA)
 - Cam Stuart, Hugh Thompson
- Volpe Center Ted Sussmann
- Amtrak; BNSF; CSX; NS; P&L; TTI; UP

Evaluating Track Substructure Moduli using Seismic Surface Waves

Timothy D. Stark, Stephen T. Wilk, Hugh B. Thompson II, Theodore R. Sussmann Jr., Mark Baker, & Carlton H. Ho

2016 International Crosstie and Fastening System Symposium Track Transitions, Crosstie Support, and Track Substructure 16 June 2016 Urbana, Illinois

19/20

Applications: Ballast Fouling

- Increased settlement
- Changes modulus/stiffness
- Decreased permeability

Increased maintenance Potential shear failures

Need better assessment of how fouling relates to track behavior

Ballast Modulus – Fouling

Material Type	Seismic Testing Young's Modulus (MPa)	•
Dry & Wet Clean Ballast	200 – 275	•
Dry Fouled Ballast	340 – 380	
Wet Fouled Ballast	135 - 170	

illinois.edu

Testing at TTCI

Multiple test sites (clean & fouled)

Results:

- Dry fouled ballast increases in modulus
- Wet fouled ballast decreases in modulus
- 50% reduction from dry to wet fouled ballast
- Little change from dry to wet clean ballast

