Field Measurements and Analysis of Concrete Crosstie Bending Moments

2016 International Crosstie & Fastening System Symposium Urbana, IL

14 June, 2016

Marcus Dersch, Zhengboyang Gao, Riley Edwards, David Lange, Yu Qian, Matt Csenge

Outline

- Background and motivation
- Site layout and instrumentation
- Project approach
- Preliminary results
- Preliminary conclusions
- Path forward

Project Background

- In 2013, UIUC conducted an international survey to determine most critical issues in concrete crosstie track
- Survey of railroads, concrete crosstie manufacturers, and researchers around the world
- Cracking from center binding (3rd most critical problem – International, 5th most critical – North America)
- Cracking from dynamic loads (4th most critical problem – International, 3rd most critical – North America)

Motivation for Research

 Previous analysis of FRA accident database indicated that deteriorated concrete crossties and support conditions are among the major track related accident causes in the US

Broken crosstie

Fouled ballast

 Industry partners stated that rail seat positive cracks are rarely seen in the field

Rail seat positive crack

Experimentation Site Layout

- Site broken up into two sections with different support conditions based on visual inspection:
 - Zone 1: Poor support
 - Historic geometry deviations and larger visible deflection
 - Zone 2: Good support
 - No visible ballast issues, smaller visible deflection

Experimentation Site Layout

• 50 surface strain gauges installed on 10 crossties

Crosstie Instrumentation

- 5 surface strain gauges installed on each crosstie:
 - Rail seat gauges (to measure rail seat positive bending)
 - Center gauge (to measure center negative bending)
 - Intermediate gauge (to measure asymmetric loading or support)

Instrumentation Protection Plan

- Surface strain gauges are delicate sensors and must be protected
- Potential types of damage:
 - Mechanical damage impacts or pressures caused by train passes or maintenance activities
 - Moisture damage ingress of water can cause wire shorts and failures

Gorilla tape		
Aluminum foil tape Neoprene rubber	M-Coat B	
Butyl rubber sealant		Lead wire
Epoxy		
Concrete cresstie		

Installation Details

- **Dates:** 25 27 March 2015
- **Safety:** Work performed under watchman/lookout
- Scope:
 - Installed 54 surface strain gauges
 - 4 "dummy" gauges were placed on concrete cylinders to provide "baseline" comparison
 - Trenched 80 ft to cover strain gauge lead wires
 - Collected data from 4 trains

Close-up of Intermediate Strain Gauge

Installed and Protected Rail Seat Gauge

Completed Instrumented Crosstie

Completed Instrumentation Zone

Completed Junction Box

Data Collection

Project Approach

Project Approach

Strain to Moment Laboratory Calibration: *Purpose*

 Measured bending strains can be converted to bending moments through sectional properties,

where,
$$M = \left(\frac{EI}{y}\right)^{E}$$

- M = bending moment
- E = elastic modulus
- = moment of inertia
- y = distance from neutral axis
- ϵ = bending strain

11111

Strain to Moment Laboratory Calibration: Procedure

Project Approach

Data Collection Details

Date	27 Mar.	29 Apr.	26 May	6, 7, 8 Jul.	13, 14 Aug.	17 Sep.	12 Nov.	5 Jan.	19 May
No. Days	1	1	1	3	2	1	1	1	1
No. Trains	4	6	4	24	14	8	5	5	4
No. Axles	2,000	3,244	2,250	13,112	7,772	4,964	2,888	2724	2144
Time Range	8:52 AM– 1:11 PM	9:40 AM– 3:11 PM	8:52 AM– 1:15 PM	12:02 AM– 9:14 PM	8:34 AM– 7:36 PM	7:47 AM– 3:37 PM	4:02 PM– 6:37 PM	8:30 AM– 3:39 PM	7:43 AM– 4:36 PM
Temp. Range (°F)	H: 63 L: 37	H: 73 L: 59	H: 65 L: 57	H: 76 L: 59	H: 95 L: 71	H: 97 L: 66	H: 53 L: 37	H: 49 L: 22	H: 53 L: 68
Conditions	Clear, Overcast	Clear	Overcast	Overcast, Light drizzle	Clear	Clear	Clear, Overcast	Clear	Clear
		WIL	γ D data pro	vided	J				

Slide 22

Example Strain Signal (Gauge C)

• Strain peaks correspond to loaded axles

Example Bending Moment Signal (Gauge C)

 Multiply strain by calibration factor to convert to moment

Project Approach

Average Center Negative Bending Moment vs. Time/Tonnage (Gauge C)

Change in Average Center Negative Bending Moments after Tamping (Gauge C)

 Average center moment of all crossties decreased, but those in Zone 2 (tamped zone) decreased more significantly

Average Center Negative Bending Moment vs. Time/Tonnage (Gauge A & E)

IQR

Box Plot for Center Negative Bending Moment (Gauge C)

- However, only 2 of 41,098 loaded axles exceeded the AREMA limit
 - 0.005% exceedance probability for Crosstie 4 and 0.0005% for all 10 crossties

Gauge A

Ш

Gauge

Box Plot for Rail Seat Positive Bending Moment (Gauge A & E)

Percent Exceedance Plot for Center and Rail Seat Bending Moments (Gauge C, Gauge A & E)

Preliminary Conclusions

- Instrumentation is robust and has not failed over the past 14 months and approximately 150 MGT
- Instrumentation is measuring true bending behavior of crosstie
- There is a variability in support conditions in this site, which causes variability in crosstie bending moments
- In general, center bending moment remained relatively constant over around 150 MGT of train passing
- Center negative bending moments increase while rail seat positive moments decrease over accumulated tonnage
- Center negative bending moments approached AREMA recommended design limits

Path Forward

- Continue collecting field data
 - Analyze effects of tamping on crossties' flexural performance
 - Monitor crossties within untamped zone
 - Install automated data collection system to capture train signals on daily basis
- Compare bending behaviors of crossties at different locations (under different traffic and track conditions)
- Further improve the design methodology of concrete crossties

Acknowledgements

- Funding for this research has been provided by:
 - National University Rail (NURail) Center, a US DOT-OST Tier 1 University Transportation Center
- Industry Partnership and support has been provided by
 - Union Pacific Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Progress Rail Services
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
 - TTX Company
- For assistance with lab/field testing and data processing
 - Josué Bastos, Zhipeng Zhang, Tom Roadcap and Quinn Todzo

FRA Tie and Fastener BAA Industry Partners:

EST SITE DO NOT Marcus S. Dersch Senior Research Engineer email: mdersch2@illinois.edu

Zhengboyang Gao *Graduate Research Assistant* email: zgao9@illinois.edu

David A. Lange Professor email: dlange@illinois.edu J. Riley Edwards Senior Lecturer and Research Scientist email: jedward2@illinois.edu

Yu Qian Research Engineer email: yuqian1@illinois.edu

Matt Csenge Manager of Experimentation email: csenge2@illinois.edu