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Background and Problem Statement
• Rail transit systems have unique loading conditions due 

to the variety of vehicles used from system to system

• Limited research has been conducted to understand the 
type and magnitude of loads in rail transit systems

• Aging rail transit infrastructure assets need to be well 
maintained or replaced to keep the system in a “state of 
good repair” – a USDOT Strategic Goal

Presenter
Presentation Notes
American Society of Civil Engineers: Transit Infrastructure Dhttp://www.infrastructurereportcard.org/a/documents/Transit.pdf
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Project Mission
Characterize the desired performance and 

resiliency requirements for concrete crossties 
and fastening systems, quantify their behavior 
under load, and develop resilient infrastructure 

component design solutions for concrete 
crossties and fastening systems for rail transit 

operators.
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Rail Transit Definitions and 
System Characteristics

Light Rail (Tram) Heavy Rail (Metro) Commuter Rail
Capacity (prs/h) 6,000 – 20,000 10,000 – 60,000 8,000 – 45,000
Exclusive ROW 40% – 90% 100% 100%
Power Supply Overhead/diesel Third rail/overhead Overhead/

third rail/diesel
Area Coverage Central business

district
Mostly central 
business district

Mostly suburban 
coverage

Station Spacing 0.25-1 mi (0.4-1.6 km) 0.5-2 mi (0.8-3.2 km) 2-5 mi (3.2-8 km)
Frequency 5-20 minutes 5-20 minutes 0.5-3 hours
Speed 20-55 mph

(32-88 km/h)
50-80 mph
(80-129 km/h)

30-125 mph
(48-201 km/h)

Example

Presenter
Presentation Notes
LR: MBTA Green Line, Metro Rail light rail in LA, Muni MetroHR: NYC subway, WMATACR: MTA LIRR, NJ Transit, Metro-North, Metra, SEPTA, MBTA 
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Rail Transit Vehicle Weight and 
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Rail Transit Vehicle Weight Definitions
• AW0: Empty vehicle operating weight

• AW1 (Seated Load)

– Fully seated passenger load + AW0

• AW2 (Design Load)

– Standing passenger load at 4/m2 + AW1

• AW3 (Crush Load)

– Standing passenger load at 6/m2 + AW1

• AW4 (Structural Design Load)

– Standing passenger load at 8/m2 + AW1

Presenter
Presentation Notes
The transit rail industry is currently using the AW0-4 rating scales to design cars that withstand passenger loading.While in crush load, passengers are touching and there is no space for another passenger to enter without causing serious discomfort to the passengers on boardCrush Load - Maximum schedule Load: an upper limit for scheduling purposes and is equivalent to the capacity of the vehicle
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Rail Transit Vehicle Weight Definitions
• AW0: Empty vehicle operating weight

• AW1 (Seated Load)

– Fully seated passenger load + AW0

• AW2 (Design Load)

– Standing passenger load at 4/m2 + AW1

• AW3 = Maximum Passenger Capacity ×
Average Passenger Weight + AW0

• AW4 (Structural Design Load)

– Standing passenger load at 8/m2 + AW1

Presenter
Presentation Notes
The transit rail industry is currently using the AW0-4 rating scales to design cars that withstand passenger loading.While in crush load, passengers are touching and there is no space for another passenger to enter without causing serious discomfort to the passengers on boardCrush Load - Maximum schedule Load: an upper limit for scheduling purposes and is equivalent to the capacity of the vehicle
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• Rail transit vehicle information

– National Transit Database (NTD) Revenue Vehicle 
Inventory

– Vehicle datasheets

– These sources
provided data for:

• 100% of light rail vehicles (2,072 of 2,072)

• 85% of heavy rail vehicles (9,781 of 11,474)

• 72% of commuter railcars (4,353 of 6,047)

• 91% of commuter locomotives (674 of 738)

Rail Transit Vehicle Weight Definitions

Vehicle empty weight     89500 lbs (AW0)     40600 kg

Presenter
Presentation Notes
While in crush load, passengers are touching and there is no space for another passenger to enter without causing serious discomfort to the passengers on board
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Rail Transit Vehicle Weight Definitions
• Average passenger weight

– 155 lbs (70 kg) per passenger is currently used in 
the Light Rail Design Handbook*

– Smith and Schroeder (2013) took a quantitative 
approach to account for the growth in rider size and 
weight over the last 30-40 years

– Federal Aviation Administration (FAA) standards 
specify 195 lbs as the winter average adult 
passenger weight to account for carry-on luggage 
and seasonal clothing

• 195 lbs (88.5 kg) is used as average passenger weight

*Parsons Brinckerhoff, Inc. 2012. Track Design Handbook for Light Rail Transit, TCRP Report 
155. Transit Research Board, Washington, DC, USA.

Presenter
Presentation Notes
While in crush load, passengers are touching and there is no space for another passenger to enter without causing serious discomfort to the passengers on board
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Light Rail, Heavy Rail, and Commuter Rail 
Vehicle Wheel Load Distribution
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Light Rail, Heavy Rail, and Commuter Rail 
Vehicle Wheel Load Distribution

• This data is balloted for inclusion in the American Railway 
Engineering and Maintenance-of-way Association (AREMA) 
Manual for Railway Engineering
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Rail Transit Vehicle Impact Factor
• Impact factor is defined as a percentage increase over 

static vertical loads intended to estimate the dynamic 
effect of wheel and rail irregularities

• AREMA recommends an impact factor of 200%, which 
indicates the design load is three times the static load, 
equivalent to an impact load factor of 3

• The same impact factor of three applies to both freight 
railroads and rail transit systems

• Data from a wheel impact load detector (WILD) site on 
Amtrak’s Northeast Corridor between New York City 
and Washington DC were analyzed to determine 
optimum design impact factors
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Peak Load vs. Nominal Wheel Load for 
Commuter Railcars
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Peak Load vs. Nominal Wheel Load for 
Commuter Locomotives
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Impact Factor Conclusions
• Impact factor of 3 considers 98.9% of nominal commuter 

railcar wheel loads at the location analyzed

• Impact factor of 2 considers 99.9% of nominal commuter 
locomotive wheel loads at the location analyzed

• Different types of rail vehicles can impart higher or lower 
impact loads on the track

– These data will be further compared to field data 
collected during this project

– The 200% impact factor recommended by AREMA 
may not be applicable to design for all forms of rail 
transit 
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Field Data Collection
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Purpose of Field Data Collection
• Field experimentation is used to quantify the in-

service demands placed on the track system across 
loading conditions and environments

• Metrics to quantify:

– Crosstie bending strain (crosstie moment design)

– Rail displacements (fastening system design)

– Vertical and lateral input loads (crosstie and 
fastening system design, and load environment 
characterization)
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Partner Agencies

Field Instrumentation Timeline
MetroLink: Fall ‘15, Winter ‘16
NYCT: Spring ‘16
Metra: Summer ‘16
TriMet: TBD
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Field Instrumentation Map 
(STL MetroLink Tangent and NYCTA Curve)

1              2              3              4               5              6

(Ambient
Temperature)

(Top Temperature)
(Base Temperature)

Crosstie Bending Strain

Laser Trigger
Vertical and Lateral Wheel Loads

Thermocouple

Rail Displacement (Base Vertical & Lateral)

Rail Displacement (Base Vertical)



Slide 23Mechanistic Design of Concrete Crossties for Rail Transit Systems

Automated Data Acquisition System
• Automated data collection 

systems have been deployed
at St. Louis MetroLink and 
New York City Transit sites 

– Uses National Instruments 
(NI) Compact DAQ (cDAQ)
equipment

• Laser sensor triggers data 
collection every time a train 
passes the site

• Thermocouple data is recorded every 5 minutes, 24 hours per day

• A third system will be installed at the Metra site in summer 2016
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Preliminary Data Collection with 
Automated DAQ

• MetroLink Site
– 154 train data files per day

– Tangent location

– Maximum operating speed: 55 mph (88 km/h)

– Deployed on March 18, 2016

• New York City Transit Site
– 88 train data files per day

– Curve location: 3.6° (485 m radius)

– Maximum operating speed: 30 mph (48 km/h)

– Deployed on April 25, 2016
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MetroLink Light Rail Vehicles
Siemens SD-400 & SD-460

• 2-vehicle (12 axle) trainsets

• Traction motor and gearbox locations:

• Normal trainset configuration:
A B B A

1    2 3    4 5    6 7 8 9   10 11  12

B A
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Box Plot Background

Max 
(within 
fences)

Min 
(within 
fences)

• Box plots are great to:

– Visualize outliers

– Compare variability of different cases

– Check for symmetry 

– Check for normality
Median

IQR

Q3 (75th 

Percentile)

Q1 (25th 

Percentile)

Lower inner fence 
(Q1-1.5×IQR)

Outlier

Upper inner fence 
(Q3+1.5×IQR)
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Center Negative Bending Comparison
(St. Louis MetroLink)
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Field Data Collection Conclusions
• Automated data collection systems can be deployed at 

remote locations and will run reliably for long durations

• In-service wheel loads may be up to 1.5 times more 
than the static wheel load for a light rail transit vehicle

• Large amounts of data collected at automated sites 
requires automated or semi-automated data processing

• From MetroLink data
– Wheel loads 15.8 kips (70 kN) and lower
– Center negative moments 24.2 kip-inches 

(2.73 kN-m) and lower

• Reserve capacity – highest measured moment would 
have to be increased by a factor of 5 to reach the center 
bending capacity for light rail ties used on MetroLink
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Immediate Path Forward
• Further expand the understanding of vehicle and 

infrastructure characteristics for rail transit systems

• Incorporate field data to evaluate the effectiveness of 
dynamic factor models and rail seat load models for 
light rail and heavy rail systems

• Install automated data collection system on commuter 
rail transit system (Metra, Chicago, IL, USA)
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