Field Testing for Understanding In Situ Concrete Crosstie and Fastener Behavior

2012 Joint Rail Conference

Philadelphia, PA

17-19 April 2012

Justin Grassé, David Lange

U.S. Department of Transportation Federal Railroad Administration

Outline

- Goals of Field Instrumentation
- Areas of Investigation
- Instrumentation Plan
- Preliminary Data Analysis
- Planned Locations for Field Testing
- Conclusion

Goals of Field Instrumentation

- Lay groundwork for mechanistic design
 of concrete crossties and fasteners
- Map stresses through the fastening system
- Develop an understanding into probabilistic loading conditions
- Provide insight for future field testing

(AREMA 2010)

Areas of Investigation

Rail

- Stresses at rail seat
- Strains in the web
- Displacements of head/base

Fasteners/ Insulator

- Strain of fasteners
- Stresses on insulator

Concrete Crossties

- Internal strains
 - Midspan
 - Rail Seat

- Stresses at rail seat
- Global displacement of the crosstie

Data Types

- Understanding of loads
 - Vertical
 - Lateral
- Reaction at the rail base
- Allowable rail movement
 - Translation
 - Rotation
- Insulator stresses

- Measures of restraint
 - Vertical
 - Lateral

Concrete crosstie stress/ moment distributions

Instruments

- NI CompactDAQ
 - 56+ Channels
- Linear potentiometers
- Strain gages
 - Convenional
 - Weldable
 - Embedment
- Load cells
- Matrix Based

Tactile Surface Sensors

Linear Potentiometers

Strain Gauges

NI cDAQ-9188

Instruments

Linear Potentiometer Fixture

Lateral Loader

- Linear Potentiometer Fixture
 - Welded steel frame
 - Designed for flexible positioning
 - Bolted fastening system
- Lateral Loading Fixture
 - Max Capacity ~ 10kips
 - Calibration Load ~ 4kips

Lateral built-up load cell Chevron patterns Transverse gages

Lateral built-up load cell

Lateral built-up load cell

Curvature: $\phi = \varepsilon/d$

Moments:

$$M_{XL} = EI\rho_{XL} = EI\left(\frac{\varepsilon_a + \varepsilon_a'}{2}\right) \cdot \frac{1}{d}$$

d = distance to neutral axis

Shear Force:

$$V_Z = (M_{XL} - M_{XR}) \cdot \frac{1}{L}$$

Chevron patterns

Chevron patterns

Shear Force:
$$V_{Z1} = \frac{EI}{(1+\nu)Q} \varepsilon_1$$

Total Strain: $\varepsilon_1 = \varepsilon_a - \varepsilon_b + \varepsilon_{a'} - \varepsilon_{b'}$

Vertical Load: $P_Z = V_{Z1} - V_{Z2}$ $= \frac{EI}{(1 + \nu)Q} (\varepsilon_1 - \varepsilon_2)$

Transverse gages

Transverse gages

Curvature: $\phi = \frac{\varepsilon}{t/2}$

t = thickness of rail base

Moment: $M_{XL} = EI\phi = \frac{EI\varepsilon}{t/2}$

Displacements

- Lateral disp. of the rail base (Dx₁)
- Vertical disp. of the rail base (Dz₁)
- Vertical disp. of the rail base (Dz₂)
- Lateral disp. of the rail head (Dx₂)
- Global disp. of the tie (Dz_g)

Slide 16

Preliminary Field Test

- Preliminary Field Investigation at TTCI
- Test Feasibility of Plans/Ideas
- Validate strain measurements
- Gain Familiarity with TTCI
 - Facility
 - Resources
 - Procedures
- Identify "unknowns"

Strain Gage Location

Lateral built-up load cell

Instrumented Clip

Analysis of Clips

Top Surface of Clips		
	Field	Gauge
After Installation	83 ksi	82 ksi
After Loading	95 ksi	65 ksi

Planned Locations for Field Testing

- Monticello Railway Museum
- Transportation Technology Center (TTC)
 - Summer 2012
- Class I Railroads
 - Amtrak
 - BNSF
 - Union Pacific

Transportation Technology Center (TTC)

Conclusions

- Instrumentation plan will provide <u>synchronized</u> <u>measurements</u> of:
 - Loading conditions
 - Allowable Movement
 - Component stresses
 - Rail seat pressures
- Results will feed into comprehensive <u>FE model</u>
- Strategy will be implemented in variable track conditions (e.g. fastening systems, curvature) for parametric analysis

Acknowledgements

U.S. Department of Transportation

Federal Railroad Administration

- Funding for this research has been provided by the Federal Railroad Administration (FRA)
- Industry Partnership and support has been provided by
 - Union Pacific (UP) Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Amsted RPS / Amsted Rail, Inc.
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
- Monticello Railway Museum
 - Tim Crouch
- Transportation Technology Center, Inc.
 - Dave Davis, Dingqing Li, Ken Lane
- For assistance in instrumentation preparation:
 - Sihang Wei, Harold Harrison, Jacob Henschen, Thomas Frankie

FRA Tie and Fastener BAA Industry Partners:

Questions?

Justin Grassé Graduate Research Assistant Department of Civil and Environmental Engineering University of Illinois, Urbana-Champaign Email: jgrasse2@illinois.edu

