Measuring Concrete Crosstie Rail Seat Pressure Distribution with Matrix Based Tactile Surface Sensors

2012 Joint Rail Conference

Philadelphia, PA

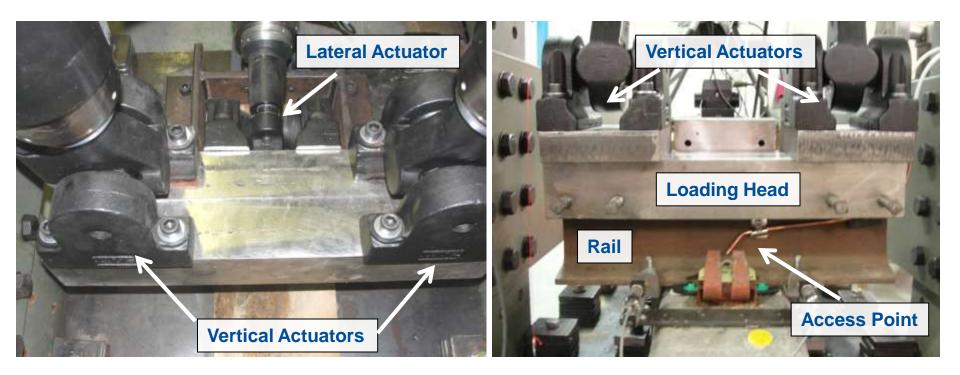
17-19 April 2012

Christopher T. Rapp, Marcus S. Dersch, J. Riley Edwards

Outline

- Pulsating Load Testing Machine (PLTM)
- Current Objective and Roles of MBTSS
- Sensor Layout and Data Representation
- Experimentation at UIUC
 - Pad Modulus Test
 - Fastening Clip Test
- Conclusions from Testing
- Future Work with MBTSS
- Questions / Comments

Pulsating Load Testing Machine (PLTM)

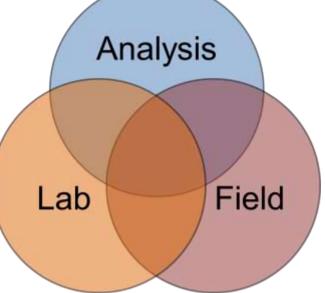

- Housed at Advanced Transportation and Research Engineering Laboratory (ATREL)
- Owned by Amsted RPS
- Used for Full Scale Concrete Tie and Fastening System Testing
- Following AREMA Test 6 Wear and Abrasion recommended practice
- Three 35,000 lb. actuators: two vertical and one horizontal
 - Ability to simulate various Lateral/Vertical (L/V) ratios by varying loads

Pulsating Load Testing Machine (PLTM)

- Research co-sponsored by Amsted RPS and Federal Railway Administration as part of a larger research program on concrete crossties and fastening systems
- Measure magnitude and distribution of pressure at the rail seat
- Gain better understanding of how load from wheel/rail contact is transferred to rail seat
- Compare pressure distribution to rail seats in various loading scenarios
- Compare pressure distribution of various fastening systems
- Identify regions of high pressures and quantify peak values

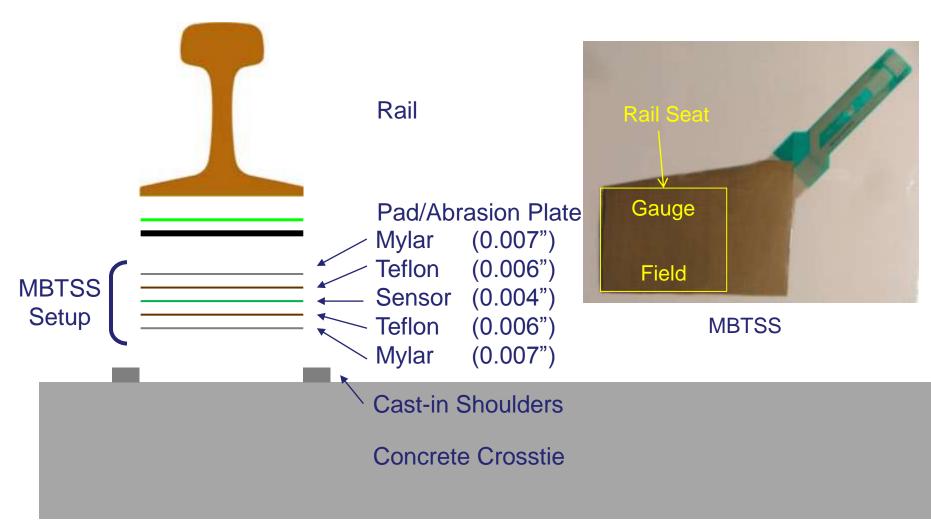
Roles of MBTSS

Analysis

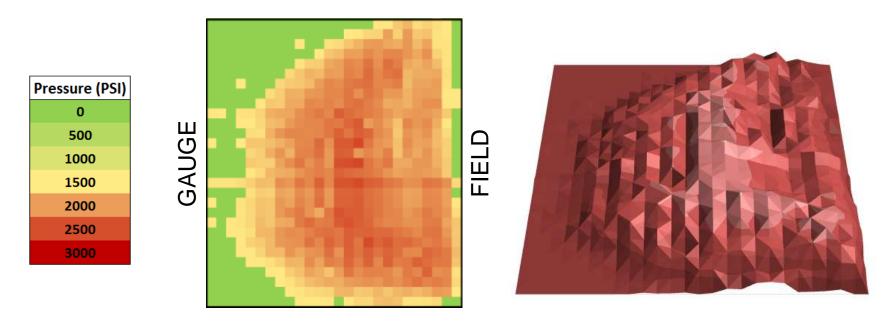

- Compare field data with lab data and theorized behaviors
- Refine modeling (analysis) with understanding of actual loading conditions

Lab

- Conduct experimentation with known
 input loads and controlled variables
- Simulate conditions found in field (L/V ratio, etc.)


Field

- Instrument various loading conditions
- Consider track geometry, speed, fastening system, etc.


Sensor Installation Layout

Visual Representation of Data

- Data visually displayed as color 2D or 3D images
- Calculate force and pressure at each sensing point
- Set standard color scale to apply to all data for better comparison

Sample MBTSS output

Measuring Rail Seat Pressure Distribution with MBTSS

			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	63	45	451	667	180	324	162	54	0
	Pressure (PSI)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	36	81	270	297	964	342	1036	460	541	108	72	0
	0		0	0	0	0	0	0	0	0	0	54 0	0	0 45	135 496	207	496 982	712 964	1000	1036	874 1280	784 1289	1072	622 856	928	126 324	126 108	0
	500		0	0	0	0	0	0	0	0	0	99	369	387	856	964	1280	1208	1541	1162	1577	1397	874	739	928	604	126	0
			0	0	0	0	0	0	0	0	234	478	739	640	1000	964	1361	1253	1631	1289	1505	1577	676	\$11	811	\$74	162	0
	1000		0	0	0	36	0	0	0	261	424	469	604	1000	1289	1199	1433	1541	1577	1289	1289	1397	622	928	928	1000	117	0
	1500		0	0	0	0	0	0	180	396	784	748	1054	1108	1289	1289	1505	1162	1505	1343	1054	1063	748	982	1000	964	45	45
	2000		0	0	0	0	0	63	460	415	\$38	856	1271	1217	1343	1217	1505	1559	1397	1217	820	892	748	1000	1162	1171	54	54
	2500		54	36	0	117	135	315	757	847	892	1180	1325	1433	1289	1793	1613	1505	1415	1289	1072	874	1000	1072		928	424	0
	3000		0	0	0	45	45	252	586	676	1036	1217	1289	1289	1505	1433		1865		1217	928	514	1289	1072		\$02	54	0
			0 36	0	0	0 36	189 487	171	748	748	1289 955	1289	1253	1289	1469	1757	1505	1793	1685	1244	1072	451 559	1108	946 928	1126 964	640 631	225 369	0
		Ш	0	ŏ	0	0	252	378	784	1108	748	1325	1343		1054		1757	_		1072		541	1072	856	1108	739	342	ů.
GAUGE		$\overline{\mathbf{D}}$	0	0	0	0	424	369	378	928	1199	1505	1153	1397	1054		2010		1505	1271	1469	856	847		1072	757	433	0
		Ă	0	0	0	0	72	234	658	766	838	1108	1289	1397	1280	1757	1649	1577	1487	1361	1108	910	1000	1072	1000	910	415	0
		0	108	90	99	180	369	604	568	1180	1054	1469	1289	1757	1289	1937	1937	2046	1793	1730	1505	1397	1162	1199	1505	1433	1180	225
			0	0	0	0	144	387	351	928	829	1217	1054	1505	1036	1730	1739	1793	1577	1469	1289	1171	928	964	1271	1217	955	0
	0.22"		36	0	0	108	279	523	478	1054	928	1325	1135	1577	1072	1757	1757	1829	1577	1487	1325	1180	946	1000	1289	1253	982	63
			0	0	0	99	261	541	469	1036	1253	1433	1126	820	1469	1937	1829	1829	1649	1505	1325	1289	1054	1217	1433	1289	1072	207
.22"	162		45	0	54	108	279	622	496	820	892	1433	1613	1397	1433	1829		1793		1415	1289	1289	1144	1144		1433	928	496
			•	0	45	54 45	162 351	658 424	685 640	1072	1217	1180	1361	1541	1577	1469	1793	1721	1739	1649	1649	1487	1397	1253	1505		1072	442
0	102		°	~	0	54	63	315	640	640	1108	883	1108	1289	1721	1505	1793		1793		1730	1613			1685	1469	1433	622
			0	0	0	0	45	63	153	333	712	694	1217	928	1388	1289	1685	1397	1739	1289	1757	1415	1469	1757	1613	1469	1433	505
Ar	Area = 0.0484 in ²			0	0	0	0	0	54	36	378	559	928	766	514	991	1505	1199	1361	1352	1289	1072	1433	1289	1739	1180	1253	135
			0	0	0	0	0	0	0	36	135	351	568	712	838	766	1000	1072	1162	1072	1289	1162	1361	1541	1325	1415	1289	234
			0	0	0	0	0	0	0	0	45	90	207	252	297	676	712	451	496	676	487	676	766	631	757	1036	982	36
			0	0	0	0	0	0	0	0	0	72	36	45	\$1	0	63	270	243	550	604	541	108	126	153	234	0	0

Slide 9

FIELD

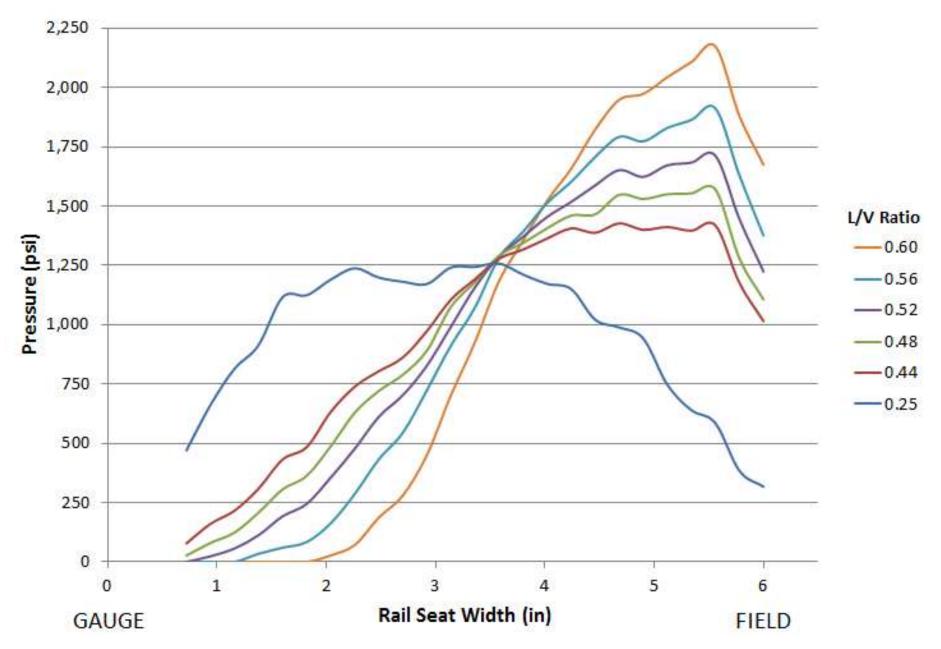
Experimentation at UIUC

- Lab experimentation to measure effect of L/V ratio on pressure distribution in the rail seat varying:
 - 1. Rail pad modulus
 - 2. Fastening clip
- Attempt to simulate field loading conditions in the lab

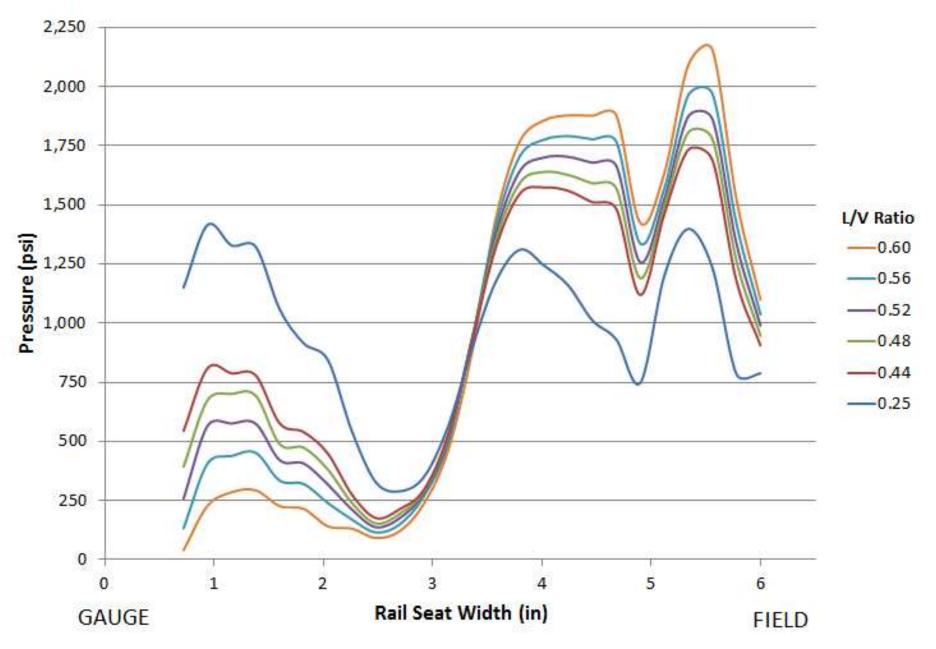
Rail Pad Test

- **Objective:** bound the experiment by using low and high modulus pads
- Two rail pad types with same dimensions and geometry
 - Santoprene[™] (Low Modulus)
 - High-Density Polyethylene (HDPE High Modulus)
- Concrete rail seat and fastening system held constant
- Identical loading conditions
 - 32.5 kip vertical load
 - Lateral load varies based on respective L/V ratio

Santoprene



HDPE



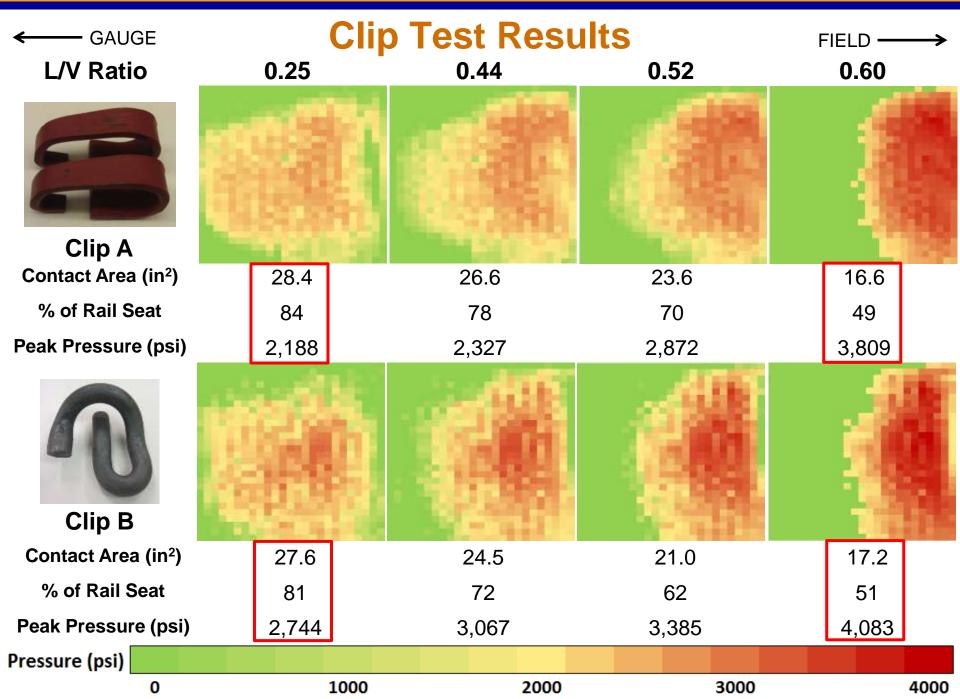
← GAUGE		Rail Pa	d Test F	FIELD>				
L/V Ratio	0.25	0.44	0.48	0.52	0.56	0.60		
Santoprene™			0					
Contact Area (ir	n²) 28.8	27.9	27.3	25.8	24.0	21.3		
% of Rail Seat	t 85	82	80	76	71	63		
Peak Pressure (psi)	2 ,139	2,573	2,800	2,925	3,162	3,400		
HDPE			1.8		. ()			
Contact Area (in	²) 20.1	19.3	19.1	19.0	18.6	17.8		
% of Rail Seat	59	57	56	56	55	52		
Peak Pressure (psi)	3,213	3,469	3,546	3,721	3,838	4,096		
Pressure (psi)								
C)	1000	200	0	3000	4000		

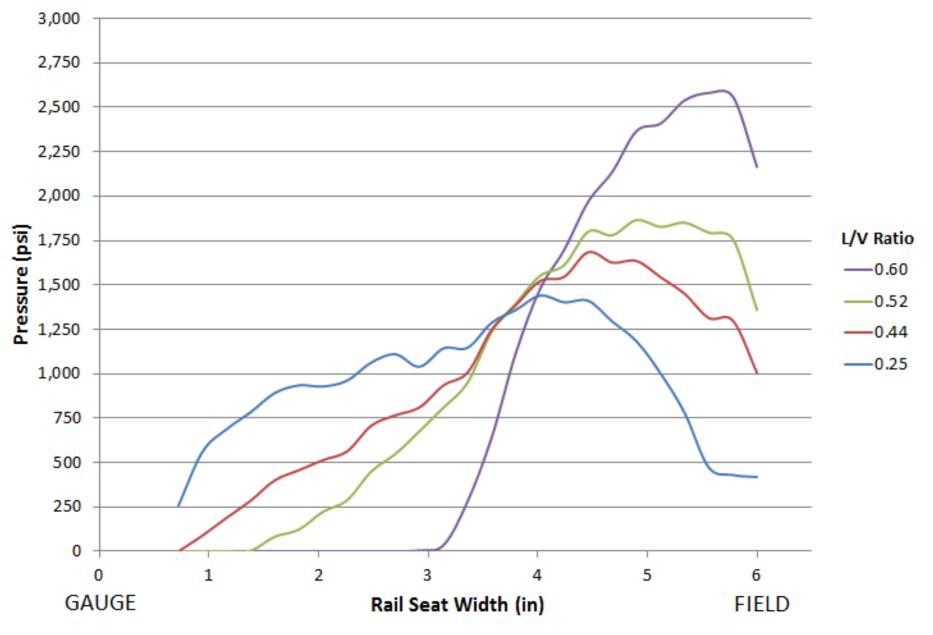
Average Pressure Distribution for Santoprene[™] Rail Pad

Average Pressure Distribution for HDPE Rail Pad

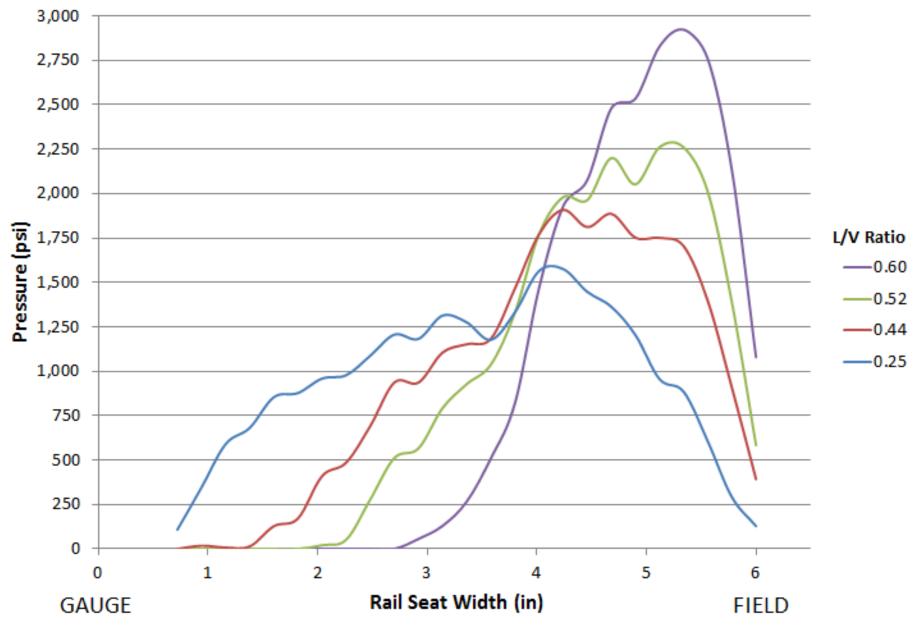
Clip Test

- **Objective:** gain preliminary understanding of clip geometry on pressure distribution
- Two fastening clips tested
- Rail pad material held constant
- Identical loading conditions
 - 32.5 kip vertical load
 - Lateral load varies based on respective L/V ratio





Clip B



Average Pressure Distribution for Clip A

Average Pressure Distribution for Clip B

Conclusions from Testing

- L/V Ratio
 - A lower L/V ratio of the resultant wheel load distributes the pressure over a larger contact area
 - A higher L/V ratio of the resultant wheel load causes a concentration of pressure on the field side of the rail seat, resulting in higher peak pressures
- Pad Modulus
 - Lower modulus rail pads distribute rail seat loads over a larger contact area, reducing peak pressure values and mitigating highly concentrated loads at this interface
 - Higher modulus rail pads distribute rail seat loads in more highly concentrated areas, possibly leading to localized crushing of the concrete surface

Conclusions from Testing (cont.)

• Fastening Clip

- Design of the clip component of the fastening system affects the shape of the pressure distribution on the rail seat
- Minimal differences in peak pressures and contact areas of pressure distribution between the two clips tested

Future Work with MBTSS

- Field testing at TTC in Pueblo, CO to understand pressure distribution varying:
 - Degree of curvature
 - Fastening system design
 - Train speeds

- Perform field testing at Monticello Railway Museum in Monticello, IL on section of concrete crosstie track
- Instrument high and low rail seats of a crosstie to compare varying track geometries
- Continue pad modulus testing within bounded experiments
- Continue testing various fastening systems

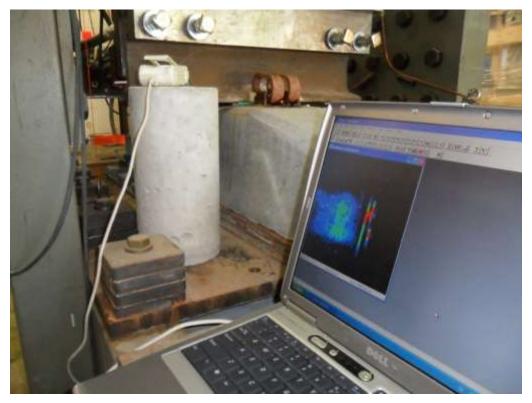
Acknowledgements

U.S. Department of Transportation

Federal Railroad Administration

- Funding for this research has been provided by the Federal Railway Administration (FRA)
- Industry Partnership and support has been provided by
 - Union Pacific (UP) Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Amsted RPS / Amsted Rail, Inc.
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
- Marc Killion and Timothy Prunkard UIUC
- Professor Jerry Rose and graduate students University of Kentucky
- AAR/TTC Dave Davis, for assisting in field tests

FRA Tie and Fastener BAA Industry Partners:



Questions / Comments

Christopher T. Rapp Graduate Research Assistant Rail Transportation and Engineering Center – RailTEC University of Illinois at Urbana-Champaign e-mail: ctrapp3@illinois.edu

