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Concrete Crossties – Overview of Use

• Typical Usage:

– Freight  Heavy tonnage 

lines, steep grades, and 

high degrees of curvature

– Passenger  High density 

corridors (e.g. Amtrak’s 

Northeast Corridor [NEC])

– Transit applications

• Number of concrete ties in 

North America*:

– Freight  25,000,000

– Passenger  2,000,000

– Transit  Significant 

quantities (millions)

*Approximate
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Concrete Crosstie and Fastener
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2012 International Survey Results – Criticality of Problems

Problem (higher ranking is more critical) Average Rank

International Responses

Tamping damage 6.14

Shoulder/fastening system wear or fatigue 5.50

Cracking from center binding 5.36

Cracking from dynamic loads 5.21

Cracking from environmental or chemical degradation 4.67

Derailment damage 4.57

Other (e.g. manufactured defect) 4.09

Deterioration of concrete material beneath the rail 3.15

North American Responses

Deterioration of concrete material beneath the rail 6.43

Shoulder/fastening system wear or fatigue 6.38

Cracking from dynamic loads 4.83

Derailment damage 4.57

Cracking from center binding 4.50

Tamping damage 4.14

Other (e.g. manufactured defect) 3.57

Cracking from environmental or chemical degradation 3.50
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Current Design Process

• Found in AREMA Manual on Railway Engineering

• Based largely on practical experience:

– Lacks complete understanding of failure 

mechanisms and their causes

– Empirically derives loading conditions

(or extrapolates existing relationships)

• Can be driven by production and installation practices

• Improvements are difficult to implement without 

understanding complex loading environment
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Principles of Mechanistic Design

1. Quantify track system input loads (wheel loads)

2. Qualitatively establish load path (free body diagrams, basic 

modeling, etc.)

3. Quantify demands on each component

a. Laboratory experimentation

b. Field experimentation

c. Analytical modeling

4. Link quantitative data to component geometry and materials 

properties (materials decision)

5. Relate loading to failure modes

6. Investigate interdependencies through modeling

7. Establish mechanistic design practices and incorporate into 

AREMA Recommended Practices
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Determining System Input Loads

• Quantitative methods of data collection (Step 1):

– Wheel Impact Load Detectors (WILD)

– Instrumented Wheel Sets (IWS)

– Truck Performance Detectors (TPD)

– UIUC Instrumentation Plan (FRA Tie BAA)

• Most methods above are used to monitor rolling stock 

performance and assess vehicle health

• Can provide insight into the magnitude and 

distribution of loads entering track structure

– Limitations to WILD: tangent track (still need lateral 

curve data), good substructure (not necessarily 

representative of the broader rail network)
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Vertical Wheel Loads – Shared Infrastructure

Source: Amtrak – Edgewood, MD (November 2010)
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UNLOADED FREIGHT CARS

PASSENGER COACHES

LOADED FREIGHT CARS

Source: Amtrak – Edgewood, MD (November 2010)

Effect of Traffic Type on Peak Wheel Load
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Talbot/Hay

Dynamic Wheel Load Factors

Source: Amtrak – Edgewood, MD (November 2010)
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More than a Dynamic Factor: Impact Factor

0.4%

𝑰𝒎𝒑𝒂𝒄𝒕 𝑭𝒂𝒄𝒕𝒐𝒓 (𝑰𝑭) =
𝑷𝒆𝒂𝒌 𝑳𝒐𝒂𝒅

𝑺𝒕𝒂𝒕𝒊𝒄 𝑳𝒐𝒂𝒅

Source: UPRR – Gothenburg, NE (January 2010)
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So What is Our Design Threshold?
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Development of Quantitative Loading Model
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Locomotives

Development of Quantitative Loading Model
Conceptual Sketch
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Establishment of the Qualitative Load Path
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Rail Seat Load Calculation Methodologies
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FRA Tie and Fastening System 

BAA Objectives and Deliverables
• Program Objectives

– Conduct comprehensive international literature review 

and state-of-the-art assessment for design and 

performance

– Conduct experimental laboratory and field testing, 

leading to improved recommended practices for design

– Provide mechanistic design recommendations for 

concrete crossties and fastening system design in the 

US

• Program Deliverables

– Improved mechanistic design recommendations for 

concrete crossties and fastening systems in the US

– Improved safety due to increased strength of critical

infrastructure components

– Centralized knowledge and document depository for 

concrete crossties and fastening systems

FRA Tie and Fastener BAA

Industry Partners:
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Quantification of Lateral Loads Entering 

the Shoulder Face (Insert)
• Instrumented shoulder face insert

– Original shoulder face is removed

– Small beam insert replaces removed section

– 4-point bending beam experiment

• Beam strategy is a well-established, successful technology
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Transfer of Lateral Load to Shoulder Face
32.5 kip vertical load, 0.5 L/V ratio

Time (Seconds)
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Percent of Lateral Load Transferred to Shoulder
Preliminary Data
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Full Scale Track Response Experimental System
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Full Scale Track Response Experimental System
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• Lay groundwork for mechanistic design of concrete 

crossties and elastic fasteners 

• Quantify the demands placed on each component within 

the system

• Develop an understanding into field loading conditions

• Provide insight for future field testing

• Collect data to validate the UIUC concrete crosstie and 

fastening system FE model

Goals of Field Instrumentation
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Areas of Investigation
Fasteners/ Insulator

• Strain of fasteners

• Stresses on insulator

• Moments at the   

rail seat

• Stresses at rail seat

• Vertical 

displacements of 

crossties

Concrete Crossties

Rail

• Stresses at rail seat

• Strains in the web

• Displacements of web/base
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TTCI Field Testing Locations

5 degree curve spiral

Balance Speed = 33 mph

Tangent

Speeds up to 105 mph
Railroad Test

Track (RTT)

High-Tonnage Loop (HTL)
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Loading Environment

• Track Loading Vehicle (TLV)

– Static

– Dynamic

• Track modulus

• Freight Consist

– 6-axle locomotive (393k)

– Instrumented car

– Nine cars

• 263, 286, 315 GRL Cars

• Passenger Consist

– 4-axle locomotive (255k)

– Nine coaches

• 87 GRL
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Fully Instrumented Rail Seats

Instrumented 

Low Rail
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Instrumented Low Rail
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Field-side Instrumentation
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Gauge-side Instrumentation

Lateral Rail 

Displacement
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Data Acquisition System
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Tangent Track (RTT) – Passenger Train
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RTT Curved Instrumentation – Train Pass
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Lateral Loads Acting on a Curve Track

HIGH LOW
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Global Track Deflections Under 

Passage of Freight Train
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Vertical Displacements of Crossties (HTL)
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Concrete Crosstie and Fastening System
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Component Modeling: Validation
• Clip Model

Mises stress contour

(Clamping force = 11.6 kN) Clamping force-displacement curves

Stress concentration due 

to support 0
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Static loading of the model

Deformation contour

Component Modeling: Concrete Crosstie

and Ballast
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System Model: Multiple-Tie Modeling

• Track loading vehicle (TLV) applying vertical and lateral loads to the track 

structure in field

• The symmetric model including 5 crossties

Simplified model:

Fastening system were replaced 

by BCs and pressure 

Detailed model with the fastening system
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System Modeling: Lateral Load Path
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Current Research Thrust Areas

• Continued data analysis to understand the governing mechanics 

of the system by investigating the:

– elastic fastener (clamp) strain response

– number of ties effected simultaneously

– bending modes of the crossties

– pressure magnitude and distribution at the rail seat

• Continued comparison and validation of the UIUC tie and 

fastening system finite element model (Chen, Shin)

• Preparation for instrumentation trip (May 2013)

– Focus on lateral load path by gathering

• relative lateral tie displacements

• global lateral tie displacements

• load transferred to the clip, insulator-post, and shoulder  

• Small-scale, evaluative tests on Class I Railroads
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RailTEC Concrete Tie Research Team

• Previous Personnel

– 3 Graduate Research Assistants

– 6 Undergraduate Research Assistants

• Current Personnel

– 9 Graduate Research Assistants

– 1 Postdoctoral Researcher

– 6 Undergraduate Research Assistants

– 2 Research Engineers

– 5 Faculty
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