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Outline

• Role of Finite Element (FE) analysis in mechanistic design

• Methodology and background for FE Analysis – global and 

detailed model

• FE models for field experiments

• Displacement calibration

• Load distribution validation

• Applications for the calibrated models

• Conclusions

• Future work
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Mechanistic Design 

Framework

Literature Review

Load Path Analysis

International Standards

Current Industry Practices

AREMA Chapter 30

Finite Element Model
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Parametric Analyses

Overall Project Deliverables
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Statistical Analysis 

from FEM

Free Body Diagram 
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Probabilistic Loading



Slide 4Validating FE Model with Field Data

Methodology for FE Analysis

• Model development

− Component model

− Single-tie model

− Multiple-tie model

• Model calibration

− Displacement measurement

− Strain measurement

• Model validation

− Vertical load distribution

− Lateral load distribution

• Model application

− Parametric studies

− Simplified tool

Model development

Model calibration

Model validation

Model application

Model 

improvement
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FE models for Field Experiment

• Two symmetric models with identical loads are used to simulate the 

behavior of track in the field:

• Global model includes five crossties and fastening systems along 

with substructure support

• Detailed model includes a single crosstie and fastening system with 

substructure support

Global model Detailed model
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FE models for Field Experiment

• Global model simulates the 

system-level track behavior

• The displacement at the end 

of rail segment in the 

detailed model is the same 

as that in the global model       

(submodel technique)

• The combination of the two 

models capture the global 

behavior of the track 

system, and provide 

accurate prediction close to 

the loading point within a 

reasonable calculation time

Reaction based on global 

model displacement

Vertical load

Vertical load
Global model

Detailed model
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FE Models for Field Experiment: 

Global Model
• Global model includes five crossties and fastening systems

• Clamping forces are represented with pressure

• Coarse mesh is defined and component geometry is simplified

Global model
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• Global model includes five crossties and fastening systems

• Clamping forces are represented with pressure

• Coarse mesh is defined and component geometry is simplified

FE Models for Field Experiment: 

Global Model
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• Global model includes five crossties and fastening systems

• Clamping forces are represented with pressure

• Coarse mesh is defined and component geometry are simplified

Detailed 

model
Global 

model

FE Models for Field Experiment: 

Global Model
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• Detailed model simulates the center crosstie and fastening system in the 

global model

• Displacement at the end of rail segment is the same as global model

• Fine mesh is defined, and clamping force is simulated by inserting the clips

FE Models for Field Experiment: 

Detailed Model
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• Vertical behavior of the model is calibrated based on vertical crosstie 

displacement measurements from field experiment at TTC

• The measurements are from static test using the Track Loading Vehicle 

(TLV) on the Railroad Test Track (RTT)

Model Calibration Based on 

Field Experiment Results
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• Vertical behavior of the model is calibrated based on vertical crosstie 

displacement measurements from field experiment at TTC

• The measurements are from static test using the Track Loading Vehicle 

(TLV) on the Railroad Test Track (RTT)

Model Calibration Based on 

Field Experiment Results
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• A block is modeled as a general support for the track system to represent 

the ballast, subballast, and subgrade

• Hyperelastic material model is defined for the block, and it is calibrated to 

match the displacement measurement

Model Calibration Based on Vertical 

Displacement Measurement
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• A block is modeled as a general support for the track system to represent 

the ballast, subballast, and subgrade

• Hyperelastic material model is defined for the block, and it is calibrated to 

match the displacement measurement
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• Lateral behavior of the model is calibrated based on lateral rail 

displacement measurements from field experiment at TTC

• The measurements are from static tests using the Track Loading Vehicle 

(TLV) on the Railroad Test Track (RTT)

Model Calibration Based on Lateral 

Displacement Measurement
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• Lateral behavior of the model is calibrated based on lateral rail 

displacement measurements from field experiment at TTC

• The measurements are from static tests using the Track Loading Vehicle 

(TLV) on the Railroad Test Track (RTT)

Model Calibration Based on Lateral 

Displacement Measurement
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• Lateral behavior of the model is calibrated based on lateral rail 

displacement measurements from field experiment at TTC

• The measurements are from static test using the Track Loading Vehicle 

(TLV) on the Railroad Test Track (RTT)

Model Calibration Based on Lateral 

Displacement Measurement
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• As during the static test of TLV on tangent track, identical vertical and 

lateral loads were applied on each rail, the crossties were in tension

• Symmetric boundary condition is defined at the section of crosstie

• The lateral behavior of the model is calibrated by the property of 

interaction between concrete and shoulder

Symmetric boundary 

condition

Model Calibration Based on Lateral 

Displacement Measurement
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• As during the static test of TLV on tangent track, identical vertical/lateral 

load was applied on each rail, the crossties were in tension

• Symmetric boundary condition is defined at the section of crosstie

• The lateral behavior of the model is calibrated by the property of 

interaction between concrete and shoulder
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• The vertical/lateral load distribution based on model output is also 

compared with test measurements, and similar distribution is observed

• The model vertical load distribution is compared with the shear force 

measurement based on chevron gauge pairs

• Due to tie-to-tie variability in support condition, some difference is observed

Applied load Loaded crosstie reaction

S E
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• The vertical/lateral load distribution based on model output is also 

compared with test measurements, and similar distribution is observed

• The model vertical load distribution is compared with the shear force 

measurement based on chevron gauge pairs

• Due to tie-to-tie variability in support condition, some difference is observed

Vertical Load Distribution-Calibrated Model
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• the FE model lateral load distribution is compared with measurement of 

shoulder beam insert

Lateral Load Distribution-Field Data
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• Based on previous analysis, approximately 50% of the lateral load at a 

railseat is resisted by the shoulder



Slide 25Validating FE Model with Field Data

• Parametric studies have been conducted:

• Tensile cracking of concrete

• Lateral load path of the fastening system

• Bond-slip behavior between prestressing strand and concrete 

• Based on design of experiments, results from preliminary parametric 

studies are used to build a simplified calculation tool (I-TRACK) on 

track response

Application of the Validated Model

Gap
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Conclusions

• Using submodel technique, a global model and a detailed 

model are used to provide comparison to field experiment

• The models are calibrated with rail and crosstie 

displacements from the field experiment, and good 

agreement is observed

• Similar vertical and lateral reaction distribution are observed 

between the model output and the field test result

• The validated models are used to generate outputs for

parametric analyses and a simplified calculation tool            

(I-TRACK) on track response
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Future Work
• The submodel technique will be incorporated into the full-scale model to 

simulate the loading scenario in curved track

• Further parametric studies will be conducted to evaluate:

• Effect of surface interaction properties (i.e. friction)

• Vertical track modulus 

• Effect of component geometry on system behavior
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