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Objectives of Crosstie Bending and 

Compression Experimentation

• Determine the vertical rail seat loads

• Determine the bending moments at the crosstie rail seats and the 

crosstie center when subject to:

– Static and dynamic loads

– Varying load magnitude of rail cars (empty – 315 kips)

• Determine support conditions below crossties

• Determine the load path going through the crosstie

• Determine the effect of rail seat loading and support conditions to 

the behavior of the crosstie

• Determine how the support conditions effects the load path in the 

system
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Background: Concrete Material Properties

Concrete core testing

Newmark, UIUC

Crosstie center positive bending test

Newmark, UIUC
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Background: Concrete Crosstie Design Cracking Moment

Concrete compressive strength

From crosstie manufactorer

𝑓’𝑐(28𝑑) = 11,730 𝑝𝑠𝑖
From concrete core drill test &

positive bending test 

𝑓’𝑐(1 𝑦𝑎) = 11,000 𝑝𝑠𝑖
Using 𝑓’𝑐 = 11,000 𝑝𝑠𝑖

Concrete tensile strength

𝑓𝑡 = 7.5 𝑓′𝑐 = 787𝑝𝑠𝑖

Positive: top in compression

Negative: top in tension

• Crosstie Center Cracking Moment

- positive:    196.8 k-in

- negative:   -256.8 k-in

• Crosstie Rail-seat Cracking Moment

- positive:    405.6 k-in 

- negative:   -219.6 k-in

Using BEAM theory
𝑀𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑓𝑡 ∙ 𝐼/𝑦

Where, I and y are geometry properties
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Background: Previous Research on Support Conditions

Kaewunruen & Ramennikov, 2007

(a) central void

(b) single hanging

(c) double hanging

(d) triple hanging

(e) side-central voids
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Crosstie Instrumentation Methodology

Concrete embedment strains measured 2 inches below both rail seats

Concrete surface strains measured from one side surface of the crosstie
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Rail Seat Load Measurement

– Using Embedment Strain Gauge

CXT, Tucson AZ 

(May 2012)
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1 2 3( ) AVG cV kips e E A Q Q Q     

Where,

V – vertical load applied on the rail 

seat

eAVG – average strain recorded

EC – elastic modulus of concrete

A – simplified bearing area at the 

center of embedment strain gauges 

(equal to the area of rail seat, 6”x6”)

Q1 – correct factor for equivalent 

bearing area

Q2 – correct factor for loading 

eccentricity

Q3 – correct factor for support length

Rail Seat Load Measurement

– Laboratory Calibration



Slide 11Gauging of Concrete Crossties to Investigate Load Path in Laboratory and Field Testing

Rail Seat Load Measurement

– Laboratory Calibration
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Crosstie Bending Moment Calculation Methodology

Rail Seat 1                 Tie Center      Rail Seat 2

2 1 12 12

4 3 34 34

6 5 56 56

( 1) ( ) /

( ) ( ) /

( 2) ( ) /

S S

S S

S S

M railseat e e EI d

M center e e EI d

M railseat e e EI d

 

 

 

Where, 

e: strain recorded from concrete surface gauge #1~#6

E: elastic modulus of concrete, 4500 ksi

I: moment of inertia at each location

d: the distance between the upper and lower gauges at each location
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Instrumented Crossties

2 4 A B G1 3 I 5 6 8C D HE 7

9 10 11 12 P Q
R

S T U V W X Y Z 13 14 15 16

F

Embedment Gages, Vertical Circuit, 

Clip Strains

Crosstie Surface Strains
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Rail Seat Load Under Dynamic Load: 

Rail Seat E & U by Wheel Load
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Rail Seat Load Under Dynamic Load: 

Rail Seat E by Car Type

due to flat spot on wheel

Tie EU

Rail Seat E Rail Seat U

Tangent Track Speed = 2~70 mph
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Rail Seat Load Under Dynamic Load: 

Rail Seat U by Car Type

Tie EU

Rail Seat E Rail Seat U

Tangent Track Speed = 2~70 mph
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Flat Spot on Wheel

Flat spot hit rail right above the sensor

Tangent Track Speed = 45 mph

Flat spot on car #9 (1st wheel)

Sensor: Embedment strain gauge @ rail-seat U
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Flat Spot on Wheel

Flat spot hit rail away from the sensor

Tangent Track Speed = 45 mph

Flat spot on car #9 (1st wheel)

Sensor: Embedment strain gauge @ rail-seat W
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• Design rail seat cracking moments

• positive:    405.6 k-in 

• negative:   -219.6 k-in

• Design tie center cracking moment

• positive:    196.8 k-in 

• negative:   -256.8 k-in

Bending Moments Under Static Load: 

Rail Seats E and U and Crosstie Center E-U
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Discussion on Support Length

From field test
• Tangent track crosstie E-U

• Static loading

• 40 kips vertical wheel load

• 3 moment (strain) measurements 

from crosstie

From analysis
• Rail-seat loads were measured 

using embedment strain gauges

• Beam theory was applied

• Support conditions were calculated 

to match the moments measured
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Bending Moments Under Dynamic Load: 

Rail Seat E by Car Type

Tie EU
• Design rail seat cracking moments

• positive:    405.6 k-in

• negative:   -219.6 k-in Rail Seat E Tie Center      Rail Seat U
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Bending Moments Under Dynamic Load: 

Crosstie Center C-S by Car Type

Tie CS
• Design tie center cracking moment

• positive:    196.8 k-in 

• negative:   -256.8 k-in Rail Seat C     Tie Center Rail Seat S
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Conclusions

• 50%~75% of vertical wheel load was supported by the crosstie below the 

wheel

• In general, the recorded rail seat load and bending moment increased 

slightly as the nominal car weight increased

• The recorded rail seat load and bending moment at high speed shows more 

variability than at low speed

• Due to impact load (flat spot), the rail seat load recorded could be as great 

as 200% of  normal rail seat load 

• Bending moments recorded in field didn’t not approach the cracking limit

• Crosstie bending moment highly depended on the support condition (contact 

between crosstie and ballast)
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Future Work

• Full-scale laboratory experiment with multiple crossties will 

be accomplished in Schnabel Lab in UIUC

• Various case of support conditions will be tested



Slide 25Gauging of Concrete Crossties to Investigate Load Path in Laboratory and Field Testing

Acknowledgements

• Funding for this research has been provided by the

Federal Railroad Administration (FRA)

• Industry Partnership and support has been provided by

– Union Pacific Railroad

– BNSF Railway

– National Railway Passenger Corporation (Amtrak)

– Amsted RPS / Amsted Rail, Inc.

– GIC Ingeniería y Construcción

– Hanson Professional Services, Inc.

– CXT Concrete Ties, Inc., LB Foster Company

– TTX Company

FRA Tie and Fastener BAA

Industry Partners:



Slide 26Gauging of Concrete Crossties to Investigate Load Path in Laboratory and Field Testing

Questions?

Sihang Wei

Graduate Research Assistant

Department of Civil and Environmental Engineering

University of Illinois, Urbana-Champaign

Email: wei22@illinois.edu


