Gauging of Concrete Crossties to Investigate Load Path in Laboratory and Field Testing

Joint Rail Conference 2014 Colorado Springs, CO 3 April, 2014

Sihang Wei, Daniel Kuchma

U.S. Department of Transportation

Federal Railroad Administration UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Outline

- Project Objectives
- Introduction and Background
- Instrumentation and Laboratory Calibration
- Rail Seat Loading and Crosstie Bending Moment Calculation Methodology
- Results Analysis
- Conclusions and Future Work

Gauging of Concrete Crossties to Investigate Load Path in Laboratory and Field Testing

FRA Concrete Crosstie and Fastening System Research Program Overall Deliverables

Mechanistic Design Framework

Literature Review

Load Path Analysis

International Standards Current Industry Practices AREMA Chapter 30

I – TRACK

Statistical Analysis from FEM

Free Body Diagram Analysis

Probabilistic Loading

Finite Element Model

Laboratory Experimentation Field Experimentation

Parametric Analyses

Objectives of Crosstie Bending and Compression Experimentation

- Determine the vertical rail seat loads
- Determine the bending moments at the crosstie rail seats and the crosstie center when subject to:
 - Static and dynamic loads
 - Varying load magnitude of rail cars (empty 315 kips)
- Determine support conditions below crossties
- Determine the load path going through the crosstie
- Determine the effect of rail seat loading and support conditions to the behavior of the crosstie
- Determine how the support conditions effects the load path in the system

Background: Concrete Material Properties

Concrete core testing Newmark, UIUC Crosstie center positive bending test Newmark, UIUC

Background: Concrete Crosstie Design Cracking Moment

Concrete compressive strength From crosstie manufactorer $f'c(28d) = 11,730 \ psi$ From concrete core drill test & positive bending test $f'c(1 \ ya) = 11,000 \ psi$ Using $f'c = 11,000 \ psi$

Concrete tensile strength

 $ft = 7.5\sqrt{f'c} = 787psi$

Using BEAM theory $M_{cracking} = f_t \cdot I/y$ Where, I and y are geometry properties

Positive: top in compression Negative: top in tension

- Crosstie Center Cracking Moment
 - positive: 196.8 k-in
 - negative: -256.8 k-in
- Crosstie Rail-seat Cracking Moment
 - positive: 405.6 k-in
 - negative: -219.6 k-in

Background: Previous Research on Support Conditions

Kaewunruen & Ramennikov, 2007

Concrete embedment strains measured 2 inches below both rail seats

Concrete surface strains measured from one side surface of the crosstie

Rail Seat Load Measurement – Using Embedment Strain Gauge

CXT, Tucson AZ (May 2012)

Rail Seat Load Measurement – Laboratory Calibration

 $V(kips) = e_{AVG} \cdot E_c \cdot A \cdot Q_1 \cdot Q_2 \cdot Q_3$

Where,

V – vertical load applied on the rail seat

 e_{AVG} – average strain recorded E_{C} – elastic modulus of concrete A – simplified bearing area at the center of embedment strain gauges (equal to the area of rail seat, 6"x6") Q_{1} – correct factor for equivalent bearing area

 Q_2 – correct factor for loading eccentricity

Q₃ – correct factor for support length

Crosstie Bending Moment Calculation Methodology

Where,

e: strain recorded from concrete surface gauge #1~#6

E: elastic modulus of concrete, 4500 ksi

I: moment of inertia at each location

d: the distance between the upper and lower gauges at each location

Instrumented Crossties

Embedment Gages, Vertical Circuit, Clip Strains

Crosstie Surface Strains

Rail Seat Load Under Dynamic Load: Rail Seat E & U by Wheel Load

Rail Seat Load Under Dynamic Load: Rail Seat E by Car Type

Rail Seat Load Under Dynamic Load: Rail Seat U by Car Type

RTT, Rail Seat U (2013)

Slide 17

Flat Spot on Wheel

Flat spot hit rail right above the sensor

Tangent Track Speed = 45 mph Flat spot on car #9 (1st wheel) Sensor: Embedment strain gauge @ rail-seat U

Slide 18

Flat Spot on Wheel

Flat spot hit rail away from the sensor

Tangent Track Speed = 45 mph Flat spot on car #9 (1st wheel) Sensor: Embedment strain gauge @ rail-seat W

Bending Moments Under Static Load: Rail Seats E and U and Crosstie Center E-U

- Design rail seat cracking moments
 - positive: 405.6 k-in
 - negative: -219.6 k-in
- Design tie center cracking moment
 - positive: 196.8 k-in
 - negative: -256.8 k-in

Discussion on Support Length

From field test

- Tangent track crosstie E-U
- Static loading
- 40 kips vertical wheel load
- 3 moment (strain) measurements from crosstie

From analysis

- Rail-seat loads were measured using embedment strain gauges
- Beam theory was applied
- Support conditions were calculated to match the moments measured

Bending Moments Under Dynamic Load: Rail Seat E by Car Type

RTT, Freight, Bending Moments at Rail Seat E

- Design rail seat cracking moments
 - positive: 405.6 k-in
 - negative: -219.6 k-in

Bending Moments Under Dynamic Load: Crosstie Center C-S by Car Type

Rail Seat C

Tie Center

Rail Seat S

• negative: -256.8 k-in

Conclusions

- 50%~75% of vertical wheel load was supported by the crosstie below the wheel
- In general, the recorded rail seat load and bending moment increased slightly as the nominal car weight increased
- The recorded rail seat load and bending moment at high speed shows more variability than at low speed
- Due to impact load (flat spot), the rail seat load recorded could be as great as 200% of normal rail seat load
- Bending moments recorded in field didn't not approach the cracking limit
- Crosstie bending moment highly depended on the support condition (contact between crosstie and ballast)

Future Work

- Full-scale laboratory experiment with multiple crossties will be accomplished in Schnabel Lab in UIUC
- Various case of support conditions will be tested

Acknowledgements

U.S. Department of Transportation

Federal Railroad Administration

- Funding for this research has been provided by the Federal Railroad Administration (FRA)
- Industry Partnership and support has been provided by
 - Union Pacific Railroad
 - BNSF Railway
 - National Railway Passenger Corporation (Amtrak)
 - Amsted RPS / Amsted Rail, Inc.
 - GIC Ingeniería y Construcción
 - Hanson Professional Services, Inc.
 - CXT Concrete Ties, Inc., LB Foster Company
 - TTX Company

FRA Tie and Fastener BAA Industry Partners:

Questions?

Sihang Wei Graduate Research Assistant Department of Civil and Environmental Engineering University of Illinois, Urbana-Champaign Email: wei22@illinois.edu