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• Overview of Mechanistic Design

• Design Process

1. Define Load Inputs

• Vertical Load

• Lateral Load

• Longitudinal Load

• Load Distribution

2. Define Design Thresholds

• Material

• Geometric

• Assembly

3. Component Design Process

4. System Level Verification

Mechanistic Design Framework Outline
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Overview of Mechanistic Design

• Design approach utilizing forces measured in track structure and 

properties of materials that will withstand or transfer them

• Uses responses (e.g. contact pressure, relative displacement) to 

optimize component geometry and materials requirements

• Based on measured and predicted response to load inputs that 

can be supplemented with practical experience

• Requires thorough understanding of load path and distribution

• Allows load factors to be used to include variability due to 

location and traffic composition

• Used in other engineering industries (e.g. pavement design, 

structural steel design, geotechnical)
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• Design process consists of four stages

• To facilitate understanding of where each stage fits into the 

design process, the following graphic will be utilized

1. Define Load Inputs

2. Define Design Criteria

3. Component Design

4. System Verification

Design Process Sequence

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification

• Vertical • Lateral • Longitudinal • Distribution

• Material • Geometric • Assembly

• Material • Geometric • Assembly
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Load Characterization

• Load magnitude will vary according to:

– Traffic type

– Train speed

– Track geometry

– Vehicle and track health

• Each component of the input load must be considered

– Vertical

– Lateral 

– Longitudinal 

• A complete understanding of the input loads can lead to optimized 

component and system designs

– (e.g. as load magnitude and frequency change the design of the 

crosstie and fastening system should change)

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification
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Load Threshold Approach

• Design thresholds must be determined

– Low thresholds could yield greater loads exceeding the design value 

which could result in accelerated wear and/or component failure

• Load distributions can be analyzed to better understand thresholds

– 99.5% would be a threshold that is only exceeded by 0.5% of all wheels

• Engineers can set this threshold based on their economic model 

– Optimize between initial capital costs and operating costs

Threshold Level Conservative Less Conservative

Percentile Load (%) 99.5 97.5 95

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification
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• Vertical loads can be characterized using data from WILD sites

– Provide average load and peak load for each wheel at each site

• WILD sites only provide a measure for well maintained track

• Useful for determining overall magnitude and variability according to 

car type

• Causes of vertical load variation could include, but are not limited to:

• Additional causes in load variation due to other conditions can likely 

be accounted for using a safety factor 

Vertical Load Characterization

• Speed

• Temperature

• Location (geographic)

• Position Within the Train

• Track Geometry

• Vehicle Characteristics

• Curvature

• Grade

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification
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Peak Load (kips)

Car Type Mean 95% 97.5% 99.5% 100%

Unloaded Freight Car1 10.8 20.5 26.4 39.7 100.8

Loaded Freight Car1 42.3 56.2 65.3 84.7 156.6

Intermodal Freight Car1 27.5 46.8 54.3 74.8 141.9

Freight Locomotive1 42.8 53.9 57.5 68.8 109.6

Passenger Locomotive2 38.1 50.0 53.6 63.4 94.0

Passenger Coach2 23.2 35.3 42.9 58.5 108.8

Nominal Load (kips)

Car Type Mean 95% 97.5% 99.5% 100%

Unloaded Freight Car1 6.6 9.6 11.0 13.6 15.0

Loaded Freight Car1 33.4 39.5 40.2 41.4 45.5

Intermodal Freight Car1 20.5 35.3 36.8 39.8 50.6

Freight Locomotive1 33.6 36.6 37.2 38.5 43.5

Passenger Locomotive2 27.0 35.8 37.2 39.3 42.6

Passenger Coach2 15.0 18.3 19.0 20.1 45.4

Vertical Wheel Load Tables

Nominal Load (kips)

Car Type Mean 95% 97.5% 99.5% 100%

Unloaded Freight Car1 6.6 9.6 11.0 13.6 15.0

Loaded Freight Car1 33.4 39.5 40.2 41.4 45.5

Intermodal Freight Car1 20.5 35.3 36.8 39.8 50.6

Freight Locomotive1 33.6 36.6 37.2 38.5 43.5

Passenger Locomotive2 27.0 35.8 37.2 39.3 42.6

Passenger Coach2 15.0 18.3 19.0 20.1 45.4

Peak Load (kips)

Car Type Mean 95% 97.5% 99.5% 100%

Unloaded Freight Car1 10.8 20.5 26.4 39.7 100.8

Loaded Freight Car1 42.3 56.2 65.3 84.7 156.6

Intermodal Freight Car1 27.5 46.8 54.3 74.8 141.9

Freight Locomotive1 42.8 53.9 57.5 68.8 109.6

Passenger Locomotive2 38.1 50.0 53.6 63.4 94.0

Passenger Coach2 23.2 35.3 42.9 58.5 108.8

1Source of data: Union Pacific Railroad; Gothenburg, Nebraska; January 2010
2Source of data: Amtrak; Edgewood, Maryland, Hook, Pennsylvania, and Mansfield, Massachusetts; November 2010
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Lateral Load Characterization

• Lateral loads in curves can be characterized through the use of truck 

performance detectors (TPDs) and/or instrumented wheel sets (IWS)

– TPDs are similar to WILD sites, but found in curves

• Lateral loads must be characterized and distinguished by:

– Track curvature (tangent vs curve)

• Causes of lateral load variation could include, but are not limited to:

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification

• Speed

• Location (geographic)

• Position Within the Train

• Track Geometry

• Vehicle Characteristics

• Curvature

• Grade

• Rail Surface Condition

• Superelevation

• Low or High Rail
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Lateral Load Wheel Load Distribution
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• No comparable wayside technology to WILD or TPD sites to measure 

longitudinal load

– Some IWS can measure longitudinal load

• Longitudinal loads must be characterized and distinguished by:

– Track curvature (tangent vs curve)

– Track topography (mountains vs flats)

• Causes of load variation could include, but are not limited to :

Longitudinal Load Characterization

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification

• Speed

• Temperature

• Location (geographic)

• Position Within the Train

• Track Geometry

• Vehicle Characteristics

• Curvature

• Grade
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Load Distribution in Fastening System

• Determine load transferred to individual component of the system

• Use the load at a specific interface as the design load

• Fastening system and wear dependent

– As component geometry varies (as a result of design or wear), the 

load path will vary

• Circular relationship with component design

– Load distribution guides design of components

– Component design changes load distribution

• Quantification techniques 

– Laboratory and field experimentation

– Analytical modeling

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification
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Lateral Load Restraint
Tangent Track, TLV
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Improving Current Standards

• Recommended practices and standards have areas which can 

be improved to meet mechanistic design requirements

– Justify or explain the origination of limit states for tests

• Maximum allowable moments for concrete crossties 

(AREMA)

– Provide limits for all critical properties

• Lateral rail base displacement limit for insulator

– Develop a design process for all components

• Several pad choices are given, but no process for design

• Examining current standards gives clarity to what is missing or 

what aspects need improvement

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification
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Limit State Component Design

• Design component based on failure modes

• Determine value of design criteria for critical fastening system properties

– Highest value a property can reach that still ensures safe system 

operation

• Limit state design can be decomposed into three categories of design 

criteria, each which must have criteria limits defined

– Material

– Geometric

– Assembly

• Provides opportunity to split up design process into smaller manageable 

pieces

– E.g. - A project could analyze one specific material property

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification
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Material Design Criteria

• Define limits for properties of materials used to build components

• Independent of fastening system type and component geometry

• Determine which properties are critical, and the limiting value of the 

design criteria

• Critical properties to evaluate are:

• Example of existing material tests:

– ASTM tests regarding material properties of rail pads, described in 

Ch. 30 section 4.9.1.15 of AREMA

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification

• Compressive Strength

• Tensile Strength

• Flexural Strength

• Shear Strength

• Stiffness

• Wear Resistance

• Fatigue
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Geometric Design Criteria

• Definite limits for properties dictated by component geometry

• Fastening system dependent

• Critical properties to evaluate are:

• Same properties as for material design, but limits will be different

– Limits based on laboratory and field testing

• No existing examples of geometric design thresholds in AREMA 

standards

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification

• Compressive Strength

• Tensile Strength

• Flexural Strength

• Shear Strength

• Stiffness

• Wear Resistance

• Fatigue
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Critical Components

Insulator

Rail Pad

Clip

Abrasion Frame

Shoulder

Crosstie

Example: Safelok I fastening system
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Assembly Design Criteria

• Define the limits of properties of a fully assembled fastening system

• Simplified testing state that eliminates variation due to support 

conditions

• Critical properties to evaluate include:

• Primary areas of concern are interfaces between components

– Interfaces will vary with different fastening systems

• Examples of existing assembly tests include:

– AREMA Test 6 

– Rail Seat Load Index 

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification

• Contact Pressure

• Relative Displacement

• Wear Resistance
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Critical Interfaces

Rail Base - Insulator

Pad – Rail Base

Clip-Insulator

Pad -Abrasion Frame

Frame-Crosstie

Insulator-Shoulder

Example: Safelok I fastening system
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Component Design Process

1. Select load threshold (low, medium, or high)

2. Complete material design process

3. Complete geometric design process

4. Complete assembly design process

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification

• Compressive Strength

• Tensile Strength

• Flexural Strength

• Shear Strength

• Stiffness

• Wear Resistance

• Fatigue

• Compressive Strength

• Tensile Strength

• Flexural Strength

• Shear Strength

• Stiffness

• Wear Resistance

• Fatigue

• Contact Pressure

• Relative Displacement

• Wear Resistance
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Component Design Process

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification

Test 

Material

Choose

Material

Choose Load 

Threshold

Design 

Geometry

Test

Component

Test 

Assembly

PASS

FAIL

FAIL

System

Verification

PASS

PASS

FAIL
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Final System Verification

• Look at overall system response to confirm that design is 

adequate

• Critical properties to evaluate include:

• Typically involves field testing with varied support conditions

• Initial simulations could be performed with FEM model

– Lower cost and more timely than producing new parts

• Evaluate system by installing in track and examine critical 

properties after appropriate amount of traffic

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification

• Maximum Ballast Pressure

• Maximum Subgrade Pressure

• Total Track Deflection

• Track Modulus
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UIUC Contribution to Mechanistic Design

FEM Model

Field Experimentation

Lab Experimentation

Standards Review Mining of Existing Data

Analytical Track 

Design Tool

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification
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UIUC Contribution to Mechanistic Design

FEM Model

Field Experimentation

Lab Experimentation

Standards Review Mining of Existing Data

Analytical Track 

Design Tool

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification
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UIUC Contribution to Mechanistic Design

FEM Model

Field Experimentation

Lab Experimentation

Standards Review Mining of Existing Data

Analytical Track 

Design Tool

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification
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UIUC Contribution to Mechanistic Design

FEM Model

Field Experimentation

Lab Experimentation

Standards Review Mining of Existing Data

Analytical Track 

Design Tool

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification
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UIUC Contribution to Mechanistic Design

FEM Model

Field Experimentation

Lab Experimentation

Standards Review Mining of Existing Data

Analytical Track 

Design Tool

Define Load 

Inputs

Define 

Design Criteria
Component 

Design

System

Verification
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Conclusions

• Characterizing wheel load distribution of rail traffic will give more 

realistic values for input loads used to test components and 

system

• Limit state component design can be used to give greater 

understanding to what the factor of safety in design is

• Proposed mechanistic design methodology will provide 

consistent approach even with varying fastening systems

• Framework provides a guide for future research projects to 

improve the design process
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Future Work

• Analyze lateral load data from multiple TPD sites to develop 

similar load tables to vertical load tables

• Perform more analysis on critical properties, determine if other 

properties should be included 

• Perform literature review to determine existing research on 

determining values for component properties design criteria

• Include more system level tests, develop ideas for new tests that 

aren’t currently included in AREMA or other standards
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