#### Mechanistic Design Framework for Concrete Crosstie and Fastening System



IP Meeting Spring 2014 Colorado Springs, CO 2 April 2014

Andrew Scheppe, Riley Edwards, Marcus Dersch, Ryan Kernes

National University Rail Center - NURail USDOT-RITA Tier I University Transportation Center





U.S. Department of Transportation Federal Railroad Administration

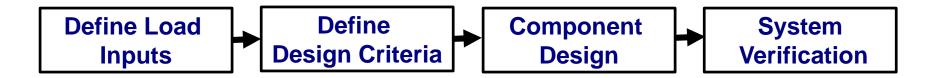
# **Mechanistic Design Framework Outline**

- Overview of Mechanistic Design
- Design Process
  - 1. Define Load Inputs
    - Vertical Load
    - Lateral Load
    - Longitudinal Load
    - Load Distribution
  - 2. Define Design Thresholds
    - Material
    - Geometric
    - Assembly
  - 3. Component Design Process
  - 4. System Level Verification



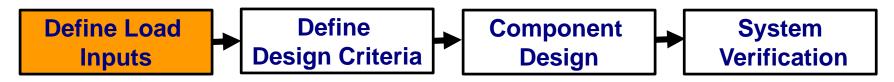


#### **Overview of Mechanistic Design**


- Design approach utilizing forces measured in track structure and properties of materials that will withstand or transfer them
- Uses responses (e.g. contact pressure, relative displacement) to optimize component geometry and materials requirements
- Based on measured and predicted response to load inputs that can be supplemented with practical experience
- Requires thorough understanding of load path and distribution
- Allows load factors to be used to include variability due to location and traffic composition
- Used in other engineering industries (e.g. pavement design, structural steel design, geotechnical)

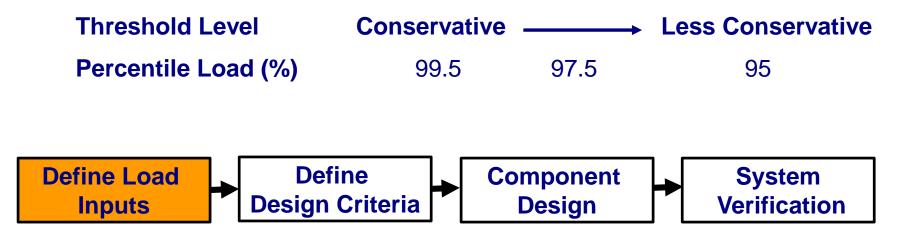
# **Design Process Sequence**

- Design process consists of four stages
- To facilitate understanding of where each stage fits into the design process, the following graphic will be utilized
- 1. Define Load Inputs
  - Vertical
     Lateral


• Longitudinal • Distribution

- 2. Define Design Criteria
  - Material
     Geometric
     Assembly
- 3. Component Design
  - Material
     Geometric
     Assembly
- 4. System Verification

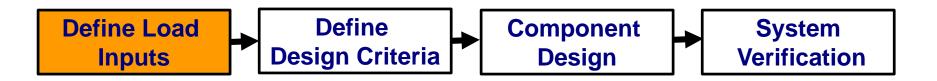



#### **Load Characterization**

- Load magnitude will vary according to:
  - Traffic type
  - Train speed
  - Track geometry
  - Vehicle and track health
- Each component of the input load must be considered
  - Vertical
  - Lateral
  - Longitudinal
- A complete understanding of the input loads can lead to optimized component and system designs
  - (e.g. as load magnitude and frequency change the design of the crosstie and fastening system should change)



#### Load Threshold Approach


- Design thresholds must be determined
  - Low thresholds could yield greater loads exceeding the design value which could result in accelerated wear and/or component failure
- Load distributions can be analyzed to better understand thresholds
  - 99.5% would be a threshold that is only exceeded by 0.5% of all wheels
- Engineers can set this threshold based on their economic model
  - Optimize between initial capital costs and operating costs



### **Vertical Load Characterization**

- Vertical loads can be characterized using data from WILD sites
  - Provide average load and peak load for each wheel at each site
- WILD sites only provide a measure for well maintained track
- Useful for determining overall magnitude and variability according to car type
- Causes of vertical load variation could include, but are not limited to:
  - Speed
  - Temperature
  - Location (geographic)
  - Position Within the Train

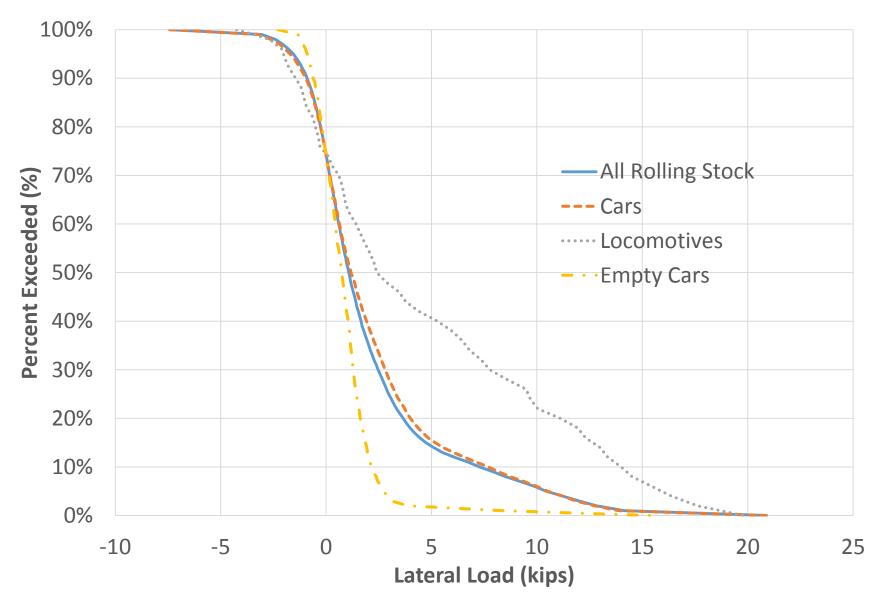
- Track Geometry
- Vehicle Characteristics
- Curvature
- e Train •
- Grade
- Additional causes in load variation due to other conditions can likely be accounted for using a safety factor



#### **Vertical Wheel Load Tables**

|                                     | Nominal Load (kips) |            |              |              |             |
|-------------------------------------|---------------------|------------|--------------|--------------|-------------|
| Car Type                            | <u>Mean</u>         | <u>95%</u> | <u>97.5%</u> | <u>99.5%</u> | <u>100%</u> |
| Unloaded Freight Car <sup>1</sup>   | 6.6                 | 9.6        | 11.0         | 13.6         | 15.0        |
| Loaded Freight Car <sup>1</sup>     | 33.4                | 39.5       | 40.2         | 41.4         | 45.5        |
| Intermodal Freight Car <sup>1</sup> | 20.5                | 35.3       | 36.8         | 39.8         | 50.6        |
| Freight Locomotive <sup>1</sup>     | 33.6                | 36.6       | 37.2         | 38.5         | 43.5        |
| Passenger Locomotive <sup>2</sup>   | 27.0                | 35.8       | 37.2         | 39.3         | 42.6        |
| Passenger Coach <sup>2</sup>        | 15.0                | 18.3       | 19.0         | 20.1         | 45.4        |
|                                     | Peak Load (kips)    |            |              |              |             |
| Car Type                            | <u>Mean</u>         | <u>95%</u> | <u>97.5%</u> | <u>99.5%</u> | <u>100%</u> |
| Unloaded Freight Car <sup>1</sup>   | 10.8                | 20.5       | 26.4         | 39.7         | 100.8       |
| Loaded Freight Car <sup>1</sup>     | 42.3                | 56.2       | 65.3         | 84.7         | 156.6       |
| Intermodal Freight Car <sup>1</sup> | 27.5                | 46.8       | 54.3         | 74.8         | 141.9       |
| Freight Locomotive <sup>1</sup>     | 42.8                | 53.9       | 57.5         | 68.8         | 109.6       |
| Passenger Locomotive <sup>2</sup>   | 38.1                | 50.0       | 53.6         | 63.4         | 94.0        |
| Passenger Coach <sup>2</sup>        | 23.2                | 35.3       | 42.9         | 58.5         | 108.8       |

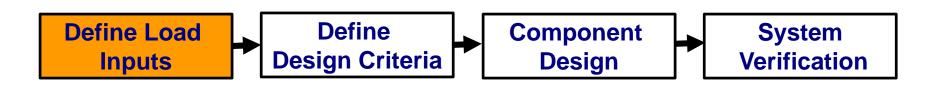
<sup>1</sup>Source of data: Union Pacific Railroad; Gothenburg, Nebraska; January 2010 <sup>2</sup>Source of data: Amtrak; Edgewood, Maryland, Hook, Pennsylvania, and Mansfield, Massachusetts; November 2010


## Lateral Load Characterization

- Lateral loads in curves can be characterized through the use of truck performance detectors (TPDs) and/or instrumented wheel sets (IWS)
  - TPDs are similar to WILD sites, but found in curves
- Lateral loads must be characterized and distinguished by:
  - Track curvature (tangent vs curve)
- Causes of lateral load variation could include, but are not limited to:
  - Speed
  - Location (geographic)
  - Position Within the Train
  - Track Geometry
  - Vehicle Characteristics

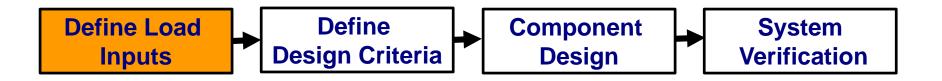
- Curvature
- Grade
- Rail Surface Condition
- Superelevation
- Low or High Rail



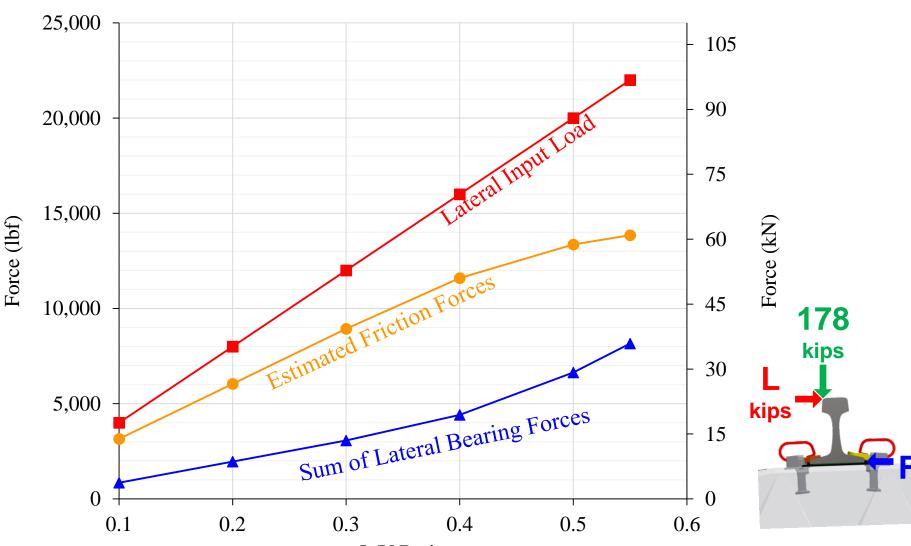

#### Lateral Load Wheel Load Distribution



# **Longitudinal Load Characterization**


- No comparable wayside technology to WILD or TPD sites to measure longitudinal load
  - Some IWS can measure longitudinal load
- Longitudinal loads must be characterized and distinguished by:
  - Track curvature (tangent vs curve)
  - Track topography (mountains vs flats)
- Causes of load variation could include, but are not limited to :
  - Speed
  - Temperature
  - Location (geographic)
  - Position Within the Train

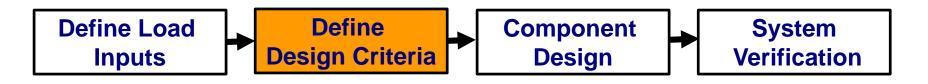
- Track Geometry
- Vehicle Characteristics
- Curvature
- Grade




## Load Distribution in Fastening System

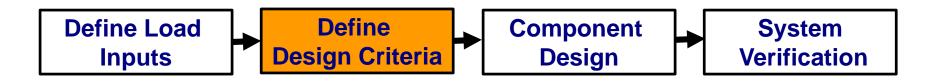
- Determine load transferred to individual component of the system
- Use the load at a specific interface as the design load
- Fastening system and wear dependent
  - As component geometry varies (as a result of design or wear), the load path will vary
- Circular relationship with component design
  - Load distribution guides design of components
  - Component design changes load distribution
- Quantification techniques
  - Laboratory and field experimentation
  - Analytical modeling




#### Lateral Load Restraint Tangent Track, TLV



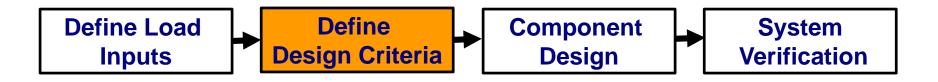
L/V Ratio


# **Improving Current Standards**

- Recommended practices and standards have areas which can
  be improved to meet mechanistic design requirements
  - Justify or explain the origination of limit states for tests
    - Maximum allowable moments for concrete crossties (AREMA)
  - Provide limits for all critical properties
    - Lateral rail base displacement limit for insulator
  - Develop a design process for all components
    - Several pad choices are given, but no process for design
- Examining current standards gives clarity to what is missing or what aspects need improvement



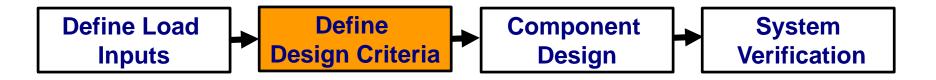
# Limit State Component Design


- Design component based on failure modes
- Determine value of design criteria for critical fastening system properties
  - Highest value a property can reach that still ensures safe system operation
- Limit state design can be decomposed into three categories of design criteria, each which must have criteria limits defined
  - Material
  - Geometric
  - Assembly
- Provides opportunity to split up design process into smaller manageable pieces
  - E.g. A project could analyze one specific material property



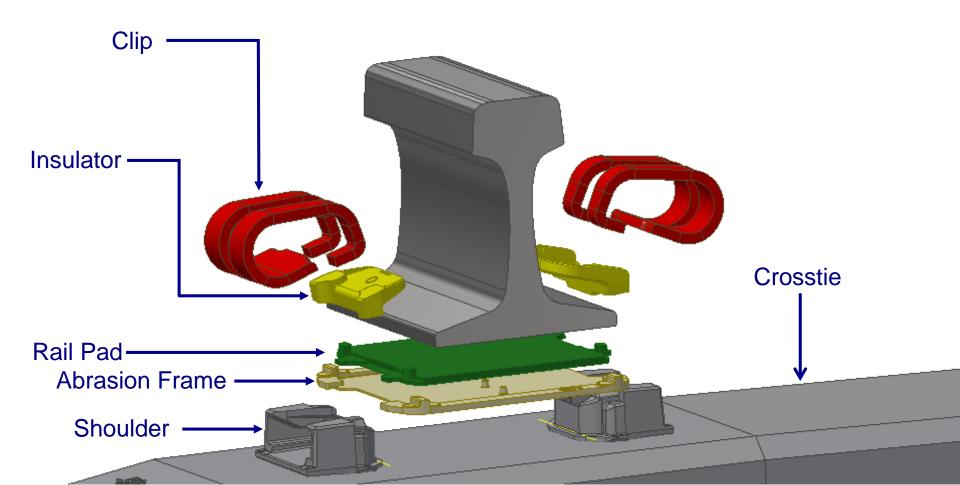
# Material Design Criteria

- Define limits for properties of materials used to build components
- Independent of fastening system type and component geometry
- Determine which properties are critical, and the limiting value of the design criteria
- Critical properties to evaluate are:
  - Compressive Strength
  - Tensile Strength
  - Flexural Strength
  - Shear Strength


- Stiffness
- Wear Resistance
- Fatigue
- Example of existing material tests:
  - ASTM tests regarding material properties of rail pads, described in Ch. 30 section 4.9.1.15 of AREMA

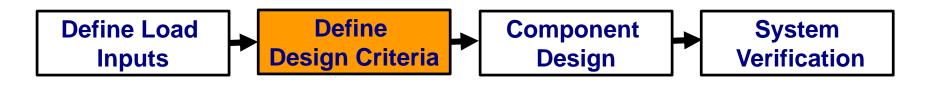


# **Geometric Design Criteria**


- Definite limits for properties dictated by component geometry
- Fastening system dependent
- Critical properties to evaluate are:
  - Compressive Strength
  - Tensile Strength
  - Flexural Strength
  - Shear Strength

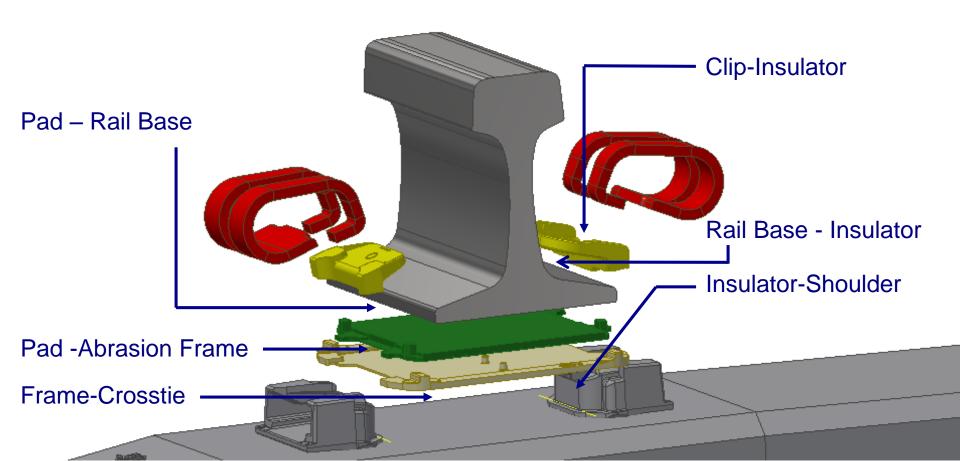
- Stiffness
- Wear Resistance
- Fatigue
- Same properties as for material design, but limits will be different
  - Limits based on laboratory and field testing
- No existing examples of geometric design thresholds in AREMA standards




#### **Critical Components**

#### Example: Safelok I fastening system




# **Assembly Design Criteria**

- Define the limits of properties of a fully assembled fastening system
- Simplified testing state that eliminates variation due to support conditions
- Critical properties to evaluate include:
  - Contact Pressure
  - Relative Displacement
  - Wear Resistance
- Primary areas of concern are interfaces between components
  - Interfaces will vary with different fastening systems
- Examples of existing assembly tests include:
  - AREMA Test 6
  - Rail Seat Load Index



#### **Critical Interfaces**

#### Example: Safelok I fastening system



# **Component Design Process**

- 1. Select load threshold (low, medium, or high)
- 2. Complete material design process
  - Compressive Strength
  - Tensile Strength
  - Flexural Strength
  - Shear Strength
- 3. Complete geometric design process
  - Compressive Strength
  - Tensile Strength
  - Flexural Strength
  - Shear Strength
- 4. Complete assembly design process

Define

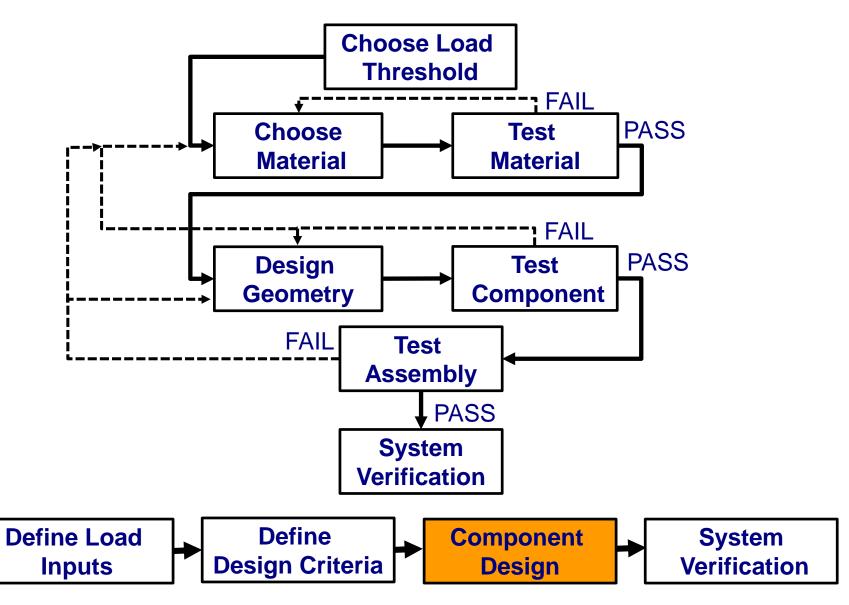
**Design Criteria** 

- Contact Pressure
- Relative Displacement
- Wear Resistance

Define Load Inputs Wear ResistanceFatigue

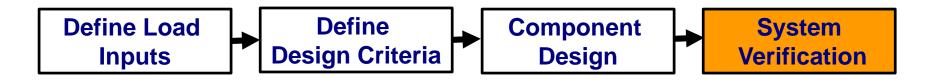
٠

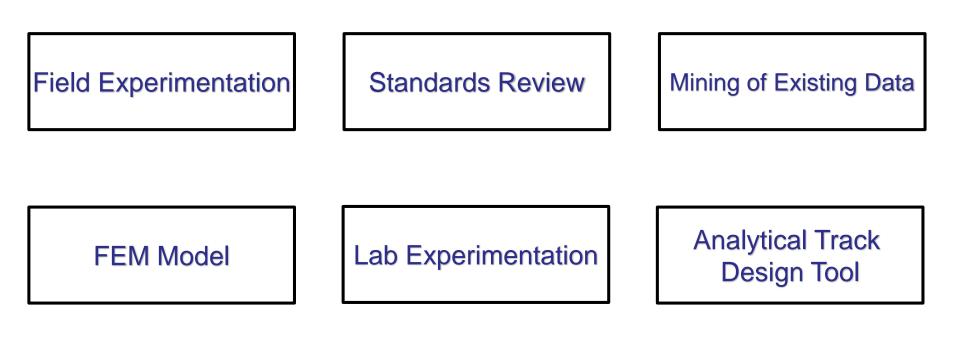
Stiffness

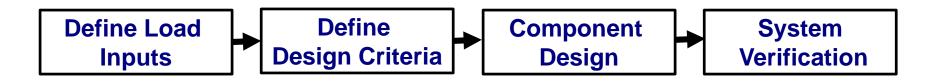

- Stiffness
- Wear Resistance
- Fatigue

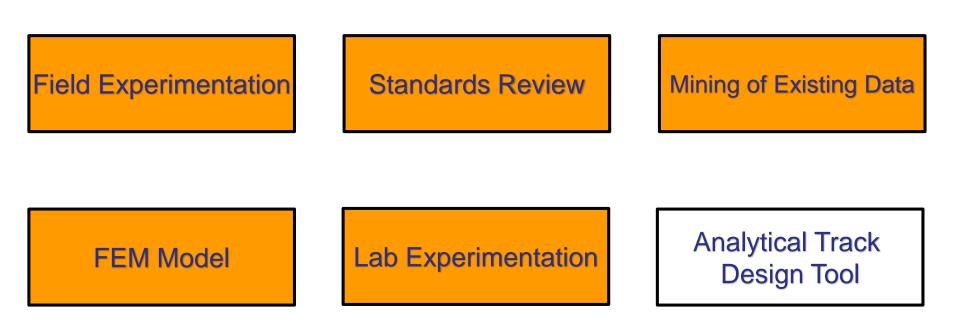
10101100

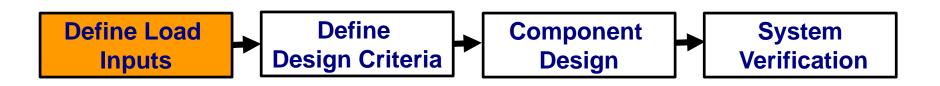




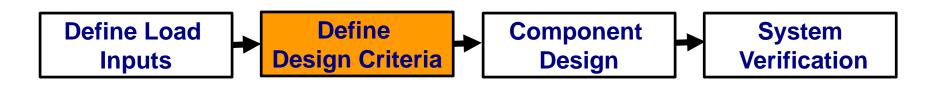


#### **Component Design Process**



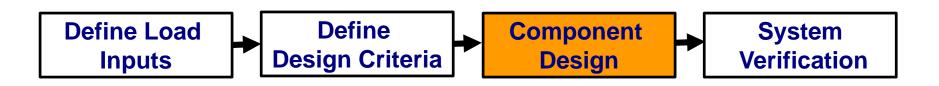


# **Final System Verification**


- Look at overall system response to confirm that design is adequate
- Critical properties to evaluate include:
  - Maximum Ballast Pressure
  - Maximum Subgrade Pressure
- Total Track Deflection
- Track Modulus
- Typically involves field testing with varied support conditions
- Initial simulations could be performed with FEM model
  - Lower cost and more timely than producing new parts
- Evaluate system by installing in track and examine critical properties after appropriate amount of traffic

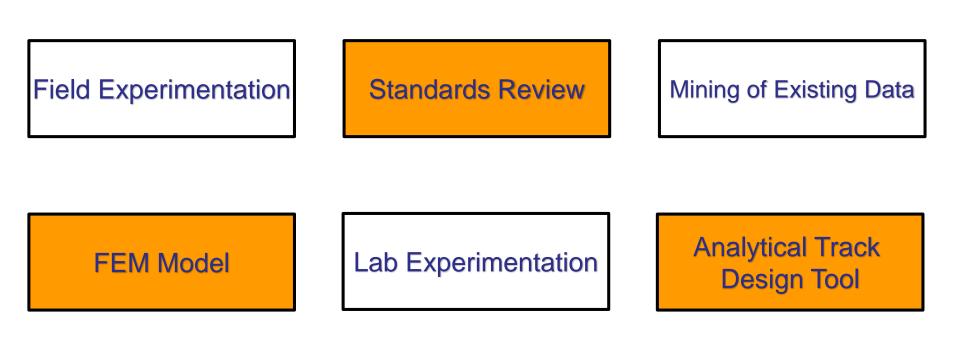


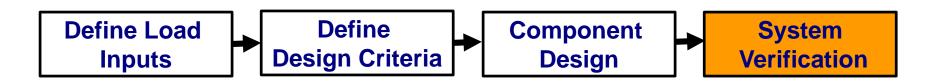











#### Slide 28





#### Conclusions

- Characterizing wheel load distribution of rail traffic will give more realistic values for input loads used to test components and system
- Limit state component design can be used to give greater understanding to what the factor of safety in design is
- Proposed mechanistic design methodology will provide consistent approach even with varying fastening systems
- Framework provides a guide for future research projects to improve the design process

#### **Future Work**

- Analyze lateral load data from multiple TPD sites to develop similar load tables to vertical load tables
- Perform more analysis on critical properties, determine if other properties should be included
- Perform literature review to determine existing research on determining values for component properties design criteria
- Include more system level tests, develop ideas for new tests that aren't currently included in AREMA or other standards

#### **Acknowledgements**

0

U.S. Department of Transportation Federal Railroad Administration National University Rail Center - NURail USDOT-RITA Tier I University Transportation Center

- Funding for this research has been provided by
  - Federal Railroad Administration (FRA)
  - National University Rail Center NURail
- Industry Partnership and support has been provided by
  - Union Pacific Railroad
  - BNSF Railway
  - National Railway Passenger Corporation (Amtrak)
  - Amsted RPS / Amsted Rail, Inc.
  - GIC Ingeniería y Construcción
  - Hanson Professional Services, Inc.
  - CXT Concrete Ties, Inc., LB Foster Company
  - TTX Company
  - Transportation Technology Center, Inc (TTCI)
- For assisting with research and design framework
  - Riley Edwards, Marcus Dersch, Ryan Kernes

FRA Tie and Fastener BAA Industry Partners:

















#### **Questions?**



Andrew Scheppe Graduate Research Assistant Railroad Transportation and Engineering Center – RailTEC Email: scheppe1@Illinois.edu Office: (217) 244-6063