Mechanics of Fastening System Rail Pad Assemblies Through Lateral Load Path Analysis

Transportation Research Board (TRB) – 93rd Annual Meeting
Washington, DC
13 January 2014

Thiago B. do Carmo, Brent Williams, Riley Edwards, Ryan Kernes, Bassem Andrawes, Christopher Barkan
Outline

- Background
- Load Path in the Fastening System
- Mechanistic Design Framework
- Research Project Objectives
- Field Setup and Experimental Results
- Conclusions
- Future Work
Background

- 25 million concrete crossties are in use on North American heavy haul freight railroads

- **Industry Trends:**
 - Many variations in fastening system design, performance, and life cycle
 - Fastening system components are failing earlier than their intended design life
 - Increasing heavy axle loads (HAL) and traffic volumes

- **Challenge:**
 - More efficient concrete crosstie and fastening system designs that withstand increasingly demanding loading conditions

Example of Failure Modes in the Fastening System
Defining the Lateral Load Path

- Vertical Wheel Load
- Lateral Wheel Load
- Bearing Forces
- Frictional Forces

Components:
- Rail
- Clip
- Insulator
- Rail Pad Assembly
- Shoulder
- Concrete Crosstie
Mechanistic Design Framework

- Representative input loads and loading distribution factors are not a clear part of the design methodology, particularly in the lateral direction.
- Approach based on loads measured in track structure and properties of materials that will withstand or transfer them.
- Uses responses (e.g. contact pressure, relative displacements) to optimize component geometry and materials requirements.
- Based on measured and predicted response to load inputs that can be supplemented with practical experience.
- Used in other engineering industries (e.g. pavement design, concrete design, structural steel design).
Research Project Objectives

- Increase understanding of vertical and lateral load paths within the track superstructure
- Provide a framework for a mechanistic design approach for concrete crossties and fastening systems
- Quantify displacements of rail pad assemblies relative to crossties in the field and investigate relationship with wheel loads and fastening system lateral stiffness
- Develop recommendations for rail pad assembly design driven by analysis of vertical and lateral load path
Field Experimental Setup

- Objective: Analyze the distribution of forces through the fastening system and impact on components relative displacements
- Tests carried out at TTC in Pueblo, CO
- **High Tonnage Loop (HTL):** 2 degree curve section with Safelok I fasteners
- **Railroad Test Track (RTT):** tangent section with Safelok I fasteners
- Linear potentiometers were used to measure the lateral displacement of the rail base and rail pads
- Strain gauges placed on the rail were used to measure the vertical and lateral wheel loads
- Track Loading Vehicle (TLV) and train consists (passenger and freight) were used to apply loads

![Diagram of Transportation Technology Center (TTC) and High Tonnage Loop (HTL)]
Field Instrumentation

- Potentiometer measuring pad lateral displacement
- Rail Displacement
- Pad Displacement
- LLED

Lateral Load Evaluation Device (LLED) – Williams 2013
Maximum Lateral Wheel Loads and Lateral LLED Forces at Rail Seat U for Increasing Speed
Mechanics of Fastening System Rail Pad Assemblies Through Lateral Load Path Analysis

Fastening System Lateral Stiffness (HTL)

- Rail Seat S: $y = 163514x + 3386.6$
- Rail Seat U: $y = 294810x + 2010.2$

LLED Lateral Force (lbf)

Rail Base Lateral Displacement (in)

- B: rail seat S
- C: rail seat U
- E: rail seat W
- G: rail seat Q

- Rail Seat S: 294,810 lbf/in
- Rail Seat U: 163,514 lbf/in
Mechanics of Fastening System Rail Pad Assemblies Through Lateral Load Path Analysis

Rail Base Lateral Translation for Increasing Wheel Load (HTL Freight Consist)

![Graph showing rail base lateral translation with increasing wheel load. The graph plots rail base lateral displacement (in) against lateral wheel load (Kips). The x-axis represents lateral wheel load in Kips ranging from 7 to 21, and the y-axis represents rail base lateral displacement in inches ranging from 0.006 to 0.022. The graph includes data points for Rail Base S and Rail Base U, with Rail Base S showing a steeper increase in displacement compared to Rail Base U.]
Mechanics of Fastening System Rail Pad Assemblies Through Lateral Load Path Analysis

Rail Pad Lateral Displacement for Increasing Lateral Wheel Load (HTL Freight Consist)

Rail Pad Lateral Displacement (in)

Lateral Wheel Load (Kips)

Rail Pad S

Rail Pad U
Mechanics of Fastening System Rail Pad Assemblies Through Lateral Load Path Analysis

Rail Base and Rail Pad Lateral Displacement for a Varying Lateral Load (RTT)

Displacement (in)

Lateral Force (kips)

40 kips Vertical Load

Rail Base S

Rail Base U

Rail Base E

Rail Base W

Pad S

Pad U

Pad W

Pad E

Rail Base W

Rail Base U

Rail Base E

Pad S

Pad U

Pad W

Pad E
Relative Lateral Displacement Between Rail Base and Rail Pad Assembly (40 kips Vertical Load)
Conclusions

• Relative displacements of the rail pad assembly and rail base with respect to the concrete crosstie were measured successfully in the field.

• The lateral displacement of the rail pad and rail base is directly related to the lateral wheel loads applied to the track.

• Depending on the location of the load application, the lateral displacement of the rail base is able to reach a value 6 times higher than the lateral displacement of the rail pad.

• Rail seats with higher lateral stiffness resulted in a higher percentage of lateral load bearing on the insulator post and shoulder face.

• Adjacent rail seats can have considerable differences in lateral stiffness and resultant magnitude of lateral forces.

• Lateral displacement of rail and rail pad assembly should be considered in fastening system design and material selection.
Future Work: Schnabel
Acknowledgements

• Funding for this research has been provided by
 – Federal Railroad Administration (FRA)
 – National University Rail Center - NURail
• Industry Partnership and support has been provided by
 – Union Pacific Railroad
 – BNSF Railway
 – National Railway Passenger Corporation (Amtrak)
 – Amsted RPS / Amsted Rail, Inc.
 – GIC Ingeniería y Construcción
 – Hanson Professional Services, Inc.
 – CXT Concrete Ties, Inc., LB Foster Company
 – TTX Company
 – Transportation Technology Center, Inc (TTCI)
• For assisting with research and experimentation
 – Marcus Dersch, George Chen, Brandon Van Dyk
Questions or Comments?

Thiago Bizarria do Carmo
University of Illinois at Urbana-Champaign
Department of Civil and Environmental Engineering
Email: carmo2@illinois.edu

Thank you!