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Presentation outline

1) Objective, motivation, review of previous 

work

2) Development of data analysis/evaluation 

schemes

3) Improvement of ultrasonic testing set-up

4) Experimental results

5) Future Work
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Motivation

Concrete and timber crossties are important components in 
the rail bed structure:

* Distribute wheel loads (Support)
* Maintain track geometry (Stability)
* Electrically isolate rails (Isolation)

<J.R. Edwards>

Material integrity of ties especially important for high speed rail structures
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Vision for ultrasonic evaluation of rail ties

Concept of implementation for performing cost effective 
inspection:  one-sided, air-coupled ultrasound techniques 

carried out from a moving platform
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Timber rail ties have long been used in rail 
structures in the US. Structural deficiency arises 
from natural degradation mechanisms

Deteriorated wood Sound wood
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A variety of 
damage 

mechanisms 
can 

compromise 
concrete ties

Microcracks

Delamination

Rail seat 
deterioration
(RSD)

<Walker et al. 2006>

<S. Naar>

<J.R. Edwards>

Concrete rail ties are becoming more prevalent, 
but can suffer deterioration



Mechanical body waves in solids: P-waves
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Mechanical body waves in solids: S-waves

Direction of Travel Direction of Particle Motion

Wave Velocity in 
solids: Governing Parameters

Shear Modulus G
Density ρ

no propagation in liquids or gases !
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Guided waves: Surface waves

 

<www.lamit.ro/earthquake-early-warning-system.htm>

Rayleigh surface wave travels along free surface but do not propagate far into the 
body of the material. Rayleigh waves travel slightly slower than shear waves, and 

show coupled longitudinal and shear motion



Guided waves: Lamb waves in plates

<N. Ryden> 

Lamb wave are set up in large plates

Multiple (infinite) modes of 
propagation, with varying motion 
character and propagation velocity

Can be visualized as a propagating 
resonance  

Increasing frequency or plate thickness



Surface guided wave

Contactless MEMS
Receiver

Contactless electrostatic
Sender

Fully contactless ultrasonic technique

Air
Concrete
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Development of data analysis/evaluation 

schemes



Ultrasonic surface wave data scans reveal that signal velocity and 

attenuation indicate presence of distributed damage

Amplitude (v)

Wave arrivals



Forward propagating 

energy attenuation
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Characterization of forward propagating signal energy 
through short-time-interval computation 
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A short-time-interval average signal a window width equal to the duration of 
the excitation pulse, of the square of the filtered signal was then constructed 

(Weaver & Sachse, 1995). 
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Shifting of energy envelope indicates energy dissipation 
from wave scattering
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Wave scattering

The reflection of ultrasonic energy away from the original direction of 
propagation; caused by reflection, refraction and mode conversion from internal 

inclusions. Causes signal loss, signal dispersion and scattering “noise”  

Detected back-
scattered signal

<Oelze 2007>



Can we make use of ultrasonic backscatter 
measurements to characterize distributed damage in 

concrete using surface waves?
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Concrete samples subjected to sets of repeated hot-cold and 
wet-dry cycles to impart distributed damage 



Ultrasonic backscatter and resonant frequency data for 
concrete samples subjected to many damage cycles

Standard resonance frequencyUT Backscattering variance

68o to ice 80o to ice

120o (dry) to 
23o (wet)



Symmetric 
Lamb

Anti-symmetric 
Lamb

A0

A1

S0

S1 A2S2

Delamination
(defect)

Concrete

Fast MASW

Air-coupled ultrasonic approach to detect
delamination in  concrete ties using Lamb waves

<S. Naar>

20 - 100 mm



Improvement of ultrasonic testing set-up



Improved ultrasonic pulse control enables empowered 
test schemes and data analysis approaches

We have improved output amplitude, voltage 
biasing control, signal to noise ratio and  
frequency and bandwidth control of input 
signal for the transmitting transducer

o Center frequency control 
between 10-90 kHz

o Improved pulse duration and 
shape control: chirp and tone 
burst signals now possible
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Ultrasonic hardware developments
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Increased offset distance between sensors and rail tie is critical 
for practical application: at least 20 cm (8 inch) offset needed
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Increased transmitter and receiver offsets yield good surface 
wave signal. However large lateral spacing may require 

modification of signal analysis schemes
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Experimental Results



Optimal (for concrete) air-coupled configuration applied to 
samples from timber ties. Contact sensor used for 
comparison
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Ultrasonic signals from sound timber across varying 
distance. 100 times averaging used. Both P-waves and 
surface waves readily generated in timber. 
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1369.8 m/s

Ultrasonic signals from deteriorated timber across varying 
distance. 100 times averaging used. Both P-waves and 
surface waves show distinction of material quality. 
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The goal is to develop understanding of inter-relation 
between damage and surface wave behavior

Detection of rail seat damage (RSD) in concrete 
ties



Rail seat deterioration (RSD)

Concrete crossties are important 

components

• Distribute wheel loads (Support)

• Maintain track geometry (Stability)

• Electrically isolate rails (Isolation)

Zeman,2010

 degradation at contact interface between the concrete rail seat and the rail pad 
that can result in track geometry problems

 Currently, freeze-thaw cracking, crushing, hydro-abrasive erosion, and 
hydraulic pressure cracking may contribute to RSD

Zeman,2010



Preliminary RSD testing configuration: small offset

Receiver 
array

Sender

R1 : no damage R2 : moderate RSD R3 : serious RSD



Test results with and without a bearing pad
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Spatially averaged signals from multi-sensor array

Savr t =
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Statistical analysis for 
inhomogeneous material 

Array averaged = Group = position, p1, p2….

In total seventy signal of each damage region
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Quantification and statistical interpretation
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Statistical interpretation of test data shows distinction 
only of most severe RSD damage
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Solid

Rough 1

Rough 2

Follow on RSD testing configuration: large offset



Testing configuration

250 mm
250 mm



Ultrasonic ray paths and sensor configuration

Path 1

Path 2

Path 3

Seven different MEMS receivers
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Energy envelope data collected along path 1 shows clear 
distinction between damage extent levels
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Future work

Optimize data analysis/evaluation schemes

Test prototype development and evaluation

Develop schemes to target tie regions rather 
than specific defects, providing overall tie heath 
index

Incorporate hardware in moving test platform

Evaluate on in-place ties 
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