The Effect of Particle Intrusion on Rail Seat Load Distributions

Committee 30 Presentation Colorado Springs, CO 1 April, 2015 Matthew J. Greve, Marcus S. Dersch, J. Riley Edwards, and Christopher P.L. Barkan Christopher P.L. Barkan

Slide 2

Outline

- Motivation for Research
- Equipment Overview
- Crushing as a Failure Mechanism
- Experimental Matrix
- Preliminary Results
- Conclusions
- Future Work

Current Objectives of Experimentation with Matrix Based Tactile Surface Sensors (MBTSS)

- Compare pressure distribution on rail seats:
 - Under various loading scenarios
 - Under various stages of rail seat wear
 - Under presence of fines and small particles
- Develop design metric for mechanistic evaluation of rail seat load distribution

Slide 4

Motivation for Research

- Rail Seat Deterioration (RSD) is the degradation of concrete directly underneath the rail pad, resulting in track geometry problems
- Surveys conducted by UIUC report that North American Class I Railroads and other railway infrastructure experts ranked RSD as one of the most critical problems associated with concrete crosstie and fastening system performance
- Potential RSD mechanisms as determined through research at UIUC:
 - Abrasion
 - Crushing
 - Freeze-thaw
 - Hydraulic pressure cracking
 - Hydro-abrasive erosion

Equipment Preparation and Protection

- Matrix Based Tactile Surface Sensors (MBTSS) trimmed to fit rail seat
- BoPET and PTFE layered on each side of sensor to protect from shear and puncture damage
- Plastic sleeves and plastic bags to protect sensor tabs and handles from puncture and debris

Plan View of Sensor and Protective Layers

Laboratory Experiment Program

- **Objective:** Explore behavior of rail seat load distribution under the presence of fines and small particles at high rail seat loads.
- Location: Research and Innovation Laboratory (RAIL) at Schnabel, UIUC
 - Pulsating Load Testing Machine (PLTM):

Biaxial loading frame owned by Amsted RPS able to simulate various L/V force ratios by varying loads

Instrumentation:

- MBTSS deployed to capture rail seat load concentration
- Potentiometers deployed to capture vertical rail base displacement
- Loading: hydraulic actuators used to apply lateral and vertical loads to single fastening system assembly

Crushing as a Failure Mechanism

- Crushing may occur in the presence of pressures exceeding design compressive strength of concrete (7,000 psi)
- Previous experimentation has not yielded pressures exceeding design strength
 - New fasteners: 1,700 psi
 - Worn fasteners: 2,400 psi
 - 3/4" RSD (20,000 lbf): 4,400 psi
- Particle intrusion at the rail seat may lead to extreme pressures
 - Presence of fines at rail seat noted in field visits on both worn and unworn rail seats
 - Sand is used to generate abrasive environment in AREMA Test 6: Wear and Abrasion

Experimental Matrix

- Particle intrusion scenarios representing both typical and extreme field conditions
- Two-dimensional matrix:
 - Particle size
 - Locomotive sand
 - Class B crushed stone aggregate
 - Smaller than No. 4 sieve
 - Intrusion region
 - Entire rail seat
 - Critical region
 - 1" closest to field side shoulder

Particle Size

		Locomotive Sand	B-Stone Aggregate
Intrusion	Field 1"	1" Sand	1" Aggregate
Region	Full Seat	Full Sand	Full Aggregate

Loading Environment

- 40,000 lbf (178 kN) vertical wheel load assumed
- Rail seat load will be distributed in field conditions, but PLTM only tests one rail seat
- Three primary levels of load transfer selected for experimentation:
 - 25% (10,000 lbf (45 kN) rail seat load)
 - 50% (20,000 lbf (89 kN) rail seat load)
 - 75% (30,000 lbf (133 kN) rail seat load)
- Typical L/V force ratio experimentation range (0 0.6) tested at each level of load transfer

Qualitative Effect of Particle Intrusion

Effect of Particle Intrusion on Contact Area

Effect of Contact Area Reduction

30,000 lbf (133 kN) Vertical Rail Seat Load

Effect of Contact Area Reduction

30,000 lbf (133 kN) Vertical Rail Seat Load

Conclusions

- Intrusion of sand particles has little effect on contact area
 - 3% average deviation
- Intrusion of aggregate on entire rail seat leads to load concentrations on aggregate peaks
 - 15% average reduction of contact area below 0.3 L/V
- Particle intrusion only in critical region (field side inch) significantly increases maximum pressure
 - 45% average increase over No Fines case
- Crushing due to a single load application is not expected on a healthy rail seat
 - 6,050 psi (41.7 MPa) maximum pressure from experimentation
- Crushing due to repeated loading **is feasible** on a healthy rail seat in the presence of fines
 - 3,500 psi (24.1 MPa) threshold exceeded in extreme loading scenarios

Slide 15

Future Work

- How repeatable are results on additional rail seats?
- How can these findings be applied to the development of RSLI?
- Can we correlate load nonuniformity to RSD?
 - How does rail seat pressure correlate to damage?
 - How does rail seat pressure correlate to crosstie life expectancy?

Acknowledgements

• Funding for this research has been provided by:

- Amsted RPS
- For assistance in experimentation preparation:
 - Timothy Prunkard and the CEE Machine Shop
- For assistance in data collection and analysis:
 - Zachary Jenkins, Yu Qian, and Daniel Rivi

Thank You

Matthew Greve Graduate Research Assistant email: greve1@illinois.edu

Riley Edwards Senior Lecturer and Research Scientist email: jedward2@illinois.edu

Marcus Dersch Senior Research Engineer email: mdersch2@illinois.edu

