Exploration of Alternatives for Prestressed Concrete Monoblock Crosstie Design Based on Flexural Capacity

2015 Joint Rail Conference

San Jose, CA

24 March 2015

Matthew V. Csenge, Henry E. Wolf, Marcus S. Dersch, J. Riley Edwards, Ryan G. Kernes, and Mauricio Gutierrez

Outline

- Background and Methodology
- Flexural Analysis
 - Rail Seat Positive Bending
 - Center Negative Bending
 - Theoretical Flexural Capacity
- Laboratory Testing
 - Prescribed Moments and Loads
 - Sequence of Lab Tests
 - Testing Protocol
 - Experimental Results
- Conclusions

Background

- Currently the majority of North American concrete crossties are 8'-6" in length
- Recently an 8'-0" crosstie has been developed and introduced to the industry
 - A shorter crosstie will experience different moment demands
 - 8'-0" crosstie design must account for different moment demands and be proven through lab and field testing
- When combined with a new manufacturing methodology the 8-0" crosstie has potential to improve efficiency of track structure, but only feasibly with advanced prestress reinforcement design
 - Eliminates need for transfer length
 - More uniform distribution of prestress force
 - Reduces internal stresses and risk of end splitting
 - Concrete and steel materials savings

Methodology

- Because of the potential performance of these crossties, it was desired to investigate the effects of new crosstie design on the flexural capacity and behavior of the crosstie
- A flexural analysis was performed investigating:
 - Rail seat positive bending moments (M_{RS+})
 - Center negative bending moments (M_{C-})
- Laboratory testing was performed to determine actual moment capacities

Flexural Analysis – Rail Seat Positive Bending Moment (M_{RS+})

- Comparison of bending moments
 - AREMA 2014
 - Structural analysis

• Structural analysis suggests less demanding rail seat positive bending moments for 8'-0" crossties

Flexural Analysis – Center Negative Bending Moment (M_{C-})

- Comparison of bending moments
 - AREMA 2014
 - Structural analysis

Crosstie Length (L)	AREMA 2014	Structural Analysis			
8'-0"	230 in-kip	360 in-kip			
8'-6"	201 in-kip	270 in-kip			

• Structural analysis suggests more demanding center negative bending moments for 8'-0" crossties

Theoretical Flexural Capacity (Section Geometry)

- In response to the higher M_{C-} demand, cross sectional properties must be changed to ensure that the crosstie performs adequately under field loading conditions
- To compare the cross-sectional properties of the 8'-0" and 8'-6" crossties a comparison of the following was made:
 - Area

- Moment of inertia
 - $I \approx \frac{bh^3}{12}$ exact I calculated by Response 2000 software

Theoretical Flexural Capacity (Section Geometry - cont.)

Location	Area (in ²)	Moment of Inertia (in ⁴)	Height of Prestress Centroid (in)	Prestress Eccentricity*+ (%)
8'-0" M _{RS+}	97	670	4.1	4.9
8'-6" M _{RS+}	90	650	4.1	-2.3
8'-0" M _{C-}	77	458	3.9	15.0
8'-6" M _{C-}	60	296	3.9	-5.7

* Positive prestress eccentricity below bending neutral axis, resists positive bending

+ Prestress eccentricity expressed as a percentage of section height

- 8'-0" crosstie has a larger area at the rail seat and center
- The height of prestress centroid is the same for both crossties
 Prestress pattern may differ

Introduction to Laboratory Testing

- Laboratory testing was performed to validate structural analysis results as well as determine actual capacity of the crossties
- Loads to be applied during lab testing were calculated using the equations and figu

the equations and figures provided in Article 30.4.4.1 of the 2014 AREMA Manual

Determination of Moments and Loads

1.3

1.2

1.1

1.0

/ Inch Vinc)

(I. Pailcont f R tetor (V&T) Tonnage Per Annum - Million Gross Tons (MGT)

Tonnage

20 15 10

120

193.1

140

225.3

Speed

$$M_{RS+} = BVT$$

Where: M_{RS+} = rail seat positive bending moment B = the bending moment in inch-kips for a particular crosstie length and spacing V = the speed factor T = the tonnage factor

Factor	Assumed or Determined Value	lina Mamant af C	0.8		/	\wedge	\setminus	
Crosstie Spacing (in)		Rend		/				
B (8'-0" Crosstie) (in-kips)		itive	0.7		*****			
B (8'-6" Crosstie) (in-kips)		Pos						
Speed (mph)			0.6	1		1		1
V			0	20	40 Spee	60 d - Miles	80 Per Hou	100 ar (MPH)
Annual Tonnage (MGT)			0	32.2	64.4 Speed -	96.5 kilometer	128.7 rs Per H	7 160.9 our (KPH)
Т				Ce	nter to Ce	nter Tie	Spacing	; in Inches

Equations and figures from Article 30.4.4.1 of the 2014 AREMA Manual

15

Prescribed Moments and Loads

	Moment Eactor*	Moment Eactor*	Prescribed	Prescribed				
Test	(8'-0")	(8'-6")	(in-kips)	(in-kips)				
M _{RS+}	1	1	275	330				
M_{RS}	0.64	0.53	176	175				
M_{C+}	0.56	0.47	154	155				
M _C -	0.92	0.67	253	221				

• Loads selected as a baseline for comparison are representative of common values used by North American freight railroads

Test	Load (kips)
M _{RS+}	64
M _{RS-}	32
M _{C+}	12
M _{C-}	17

*Factors from Article 30.4.4.1 of the 2014 AREMA Manual

Sequence of Laboratory Tests

- Per AREMA Chapter 30, Section 4.9.1.1
 - Rail Seat Negative Moment Test (M_{RS-A})
 - Rail Seat Positive Moment Test (M_{RS+A})
 - Center Negative Bending Moment Test Modified (M_{C-})
 - Center Positive Bending Moment Test (M_{C+})
 - Rail Seat Negative Moment Test (M_{RS-B})
 - Rail Seat Positive Moment Test (M_{RS+B})
 - Rail Seat Repeated Load Test Modified Seat B

Testing Protocol: Rail Seat Negative

- Load was applied continuously in the location and direction specified until the desired load was reached
- This load was held for 3 minutes while the crosstie was inspected for cracks

Testing Protocol: Rail Seat Positive

- Load was applied continuously until the desired load was reached
- This load was held for 3 minutes while the crosstie was inspected for cracks

Testing Protocol: Center Negative

- Load was applied continuously until the desired load was reached
- This load was held for 3 minutes while the crosstie was inspected for cracks

Testing Protocol: Center Positive

- Load was applied continuously until the desired load was reached
- This load was held for 3 minutes while the crosstie was inspected for cracks

Testing Protocol

Rail Seat Repeated Load - Modified

- Immediately following the rail seat positive test on Seat B, load was increased until structural cracking was observed
- As per AREMA, structural cracking is defined as a crack that propagates from the tensile face to the first layer of prestress

Experimental Results

Test	Prescribed Load (kips)	Crosstie					
		S1 ¹	S 2	S3	L1 ²	L2	L3
M _{RS-A}	32.0	Pass	Pass	Pass	Pass	Pass	Pass
M _{RS+A}	64.0	Pass	Pass	Pass	Pass	Pass	Pass
M _{C-}	17.0	Pass	Pass	Pass	17.0*+	17.0*+	Pass
M _{C+}	12.0	12.0*+	Pass	Pass	Pass	Pass	Pass
M _{RS-B}	32.0	Pass	Pass	Pass	Pass	Pass	Pass
M _{RS+B}	64.0	Pass	Pass	Pass	Pass	Pass	Pass
Structural Failure (RS+)							
Test Load (kips)	N/A	73.0	77.4	78.5	85.1	74.9	85.9
Moment (in-kips)	N/A	355.9	377.3	382.7	500.0	440.0	504.7
¹ Short crosstie (8'-0")							

²Long crosstie (8'-6")

*Structural cracking was noted during 3 minute observation period

+Units are kips

Conclusions

- Flexural analysis confirmed that under similar loading conditions a shorter crosstie will:
 - Experience lower rail seat positive bending moments
 - Shorter lever arm for rail seat positive bending
 - Greater center negative bending moments
 - Shorter length resisting rail seat loads
- Based upon flexural capacity analysis and testing of actual crossties the shorter crosstie has greater flexural capacity in:
 - Center positive bending
 - Center negative bending
 - Rail seat negative bending
- Both crosstie types exhibited flexural capacity beyond the prescribed test loads and the theoretical bending moments

Acknowledgements

- For funding this research:
 - GIC Ingeniería y Construcción
 - NURail Center
- For assistance with testing:
 - Donovan Holder, Tiago
 Costa Pinto Lopes, Bosco
 Munyaneza, Dan Rivi
- For fabrication of components and sensors:
 - Tim Prunkard and the CEE Machine Shop at UIUC

NURail Center

Contact Information

Matthew V. Csenge Graduate Research Assistant email: holder2@Illinois.edu

Henry E. Wolf Graduate Research Assistant email: csenge2@Illinois.edu

Marcus S. Dersch Senior Research Engineer email: mdersch2@Illinois.edu

J. Riley Edwards *Research Scientist and Senior Lecturer* email: jedward2@Illinois.edu

Ryan G. Kernes Engineer & Technology Development Manager email: rkernes@gic-usa.com

Mauricio Gutierrez Vice President – Commercial Director email: mgutierrez@grupogic.com

