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Background and Problem Statement

• Rail transit systems have unique loading conditions due 

to the variety of vehicles used from system to system

• Limited research has been conducted to understand the 

type and magnitude of loads in rail transit systems

• Aging rail transit infrastructure assets need to be well 

maintained or replaced to keep the system in a “state of 

good repair”
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Project Mission

Characterize the desired performance and 

resiliency requirements for concrete crossties 

and fastening systems, quantify their behavior 

under load, and develop resilient infrastructure 

component design solutions for concrete 

crossties and fastening systems for rail transit 

operators.
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Project Approach
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Rail Transit Definitions and 

System Characteristics

Light Rail (Tram) Heavy Rail (Metro) Commuter Rail

Capacity (prs/h) 6,000 – 20,000 10,000 – 60,000 8,000 – 45,000

Exclusive ROW 40% – 90% 100% 100%

Power Supply Overhead/diesel Third rail/overhead Overhead/

third rail/diesel

Area Coverage Central business

district

Mostly central 

business district

Mostly suburban 

coverage

Station Spacing 0.25-1 mi (0.4-1.6 km) 0.5-2 mi (0.8-3.2 km) 2-5 mi (3.2-8 km)

Frequency 5-20 minutes 5-20 minutes 0.5-3 hours

Speed 20-55 mph

(32-88 km/h)

50-80 mph

(80-129 km/h)

30-125 mph

(48-201 km/h)

Example
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Rail Transit Vehicle Weight and 
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Rail Transit Vehicle Weight Definitions

• AW0: Empty vehicle operating weight

• AW1 (Seated Load)

– Fully seated passenger load + AW0

• AW2 (Design Load)

– Standing passenger load at 4/m2 + AW1

• AW3 (Crush Load)

– Standing passenger load at 6/m2 + AW1

• AW4 (Structural Design Load)

– Standing passenger load at 8/m2 + AW1



Slide 9Resilient Concrete Crosstie and Fastening System Designs for Rail Transit Infrastructure

Rail Transit Vehicle Weight Definitions

• AW0: Empty vehicle operating weight

• AW1 (Seated Load)

– Fully seated passenger load + AW0

• AW2 (Design Load)

– Standing passenger load at 4/m2 + AW1

• AW3 = Maximum Passenger Capacity ×

Average Passenger Weight + AW0

• AW4 (Structural Design Load)

– Standing passenger load at 8/m2 + AW1
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• Rail transit vehicle information

– National Transit Database (NTD) Revenue Vehicle 

Inventory

– Vehicle datasheets

– These sources

provided data for:

• 100% of light rail vehicles (2,072 of 2,072)

• 85% of heavy rail vehicles (9,781 of 11,474)

• 72% of commuter railcars (4,353 of 6,047)

• 91% of commuter locomotives (674 of 738)

Rail Transit Vehicle Weight Definitions

Vehicle empty weight     89500 lbs (AW0)     40600 kg
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Rail Transit Vehicle Weight Definitions

• Average passenger weight

– 155 lbs (70 kg) per passenger is currently used in 

the Light Rail Design Handbook*

– Smith and Schroeder (2013) took quantitative and 

statistical approach to the best way to account for 

the growth in rider size and weight over the last 30-

40 years

– 195 lbs (88.5 kg) is used as average passenger 

weight to simplify calculation

*Parsons Brinckerhoff, Inc. 2012. Track Design Handbook for Light Rail Transit, TCRP Report 

155. Transit Research Board, Washington, DC, USA.

𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑟 𝑊𝑒𝑖𝑔ℎ𝑡
= 199 𝑙𝑏𝑠 × 𝑆𝑒𝑎𝑡 𝐶𝑎𝑝.+106 𝑙𝑏𝑠 × 𝑓𝑡2 𝑠𝑡𝑎𝑛𝑑 𝑠𝑝𝑎𝑐𝑒 + 𝐶𝑎𝑟 𝑊𝑒𝑖𝑔ℎ𝑡
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Light Rail, Heavy Rail, and Commuter Rail 

Vehicle Wheel Load Distribution
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Light Rail, Heavy Rail, and Commuter Rail 

Vehicle Wheel Load Distribution

• This data is balloted for inclusion in the American Railway 

Engineering and Maintenance-of-way Association (AREMA) 

Manual for Railway Engineering
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Rail Transit Vehicle Impact Factor

• Impact factor is defined as a percentage increase over 

static vertical loads intended to estimate the dynamic 

effect of wheel and rail irregularities

• AREMA recommends an impact factor of 200%, which 

indicates the design load is three times the static load, 

equivalent to an impact load factor of 3

• The same impact factor of three applies to both freight 

railroads and rail transit systems

• Data from a wheel impact load detector (WILD) site on 

Amtrak’s Northeast Corridor between New York City 

and Washington DC were analyzed to determine 

optimum design impact factors
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Peak Load vs. Nominal Wheel Load for 

Commuter Railcars
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Peak Load vs. Nominal Wheel Load for 

Commuter Locomotives



Slide 18Resilient Concrete Crosstie and Fastening System Designs for Rail Transit Infrastructure

Impact Factor Conclusions

• Impact factor of 3 considers 98.9% of nominal 

commuter railcar wheel loads at the location analyzed

• Impact factor of 2 considers 99.9% of nominal 

commuter locomotive wheel loads at the location 

analyzed

• Different types of rail vehicles can impart higher or 

lower impact loads on the track

– These data will be further compared to field data 

collected during this project
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Field Data Collection
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Purpose of Field Data Collection

• Field experimentation is used to quantify the in-

service demands placed on the track system across 

loading conditions and environments

• Metrics to quantify:

– Crosstie bending strain (crosstie moment design)

– Rail displacements (fastening system design)

– Vertical and lateral input loads (crosstie and 

fastening system design, and load environment 

characterization)
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Partner Agencies

Field Instrumentation Timeline

MetroLink: Fall ‘15, Winter ‘16

NYCT: Spring ‘16

Metra: Summer ‘16

TriMet: TBD
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Instrumentation Map
1        2        3        4        5        6

Crosstie Bending Strain

Vertical and Lateral Load (Wheel Loads)
Rail Displacement (Base Vertical, Base Lateral)
Rail Displacement (Base Vertical)
Thermocouple

(Ambient Temperature)

(Top Temperature)

(Base Temperature)

Laser Trigger
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Automated Data Acquisition System

• Automated data collection 

systems have been deployed at 

MetroLink and New York City 

Transit sites using National 

Instruments (NI) Compact 

DAQ (cDAQ) equipment

• Laser sensor triggers data 

collection every time a train 

passes the site

• Thermocouple data is recorded every 5 minutes, 24 hours per day

• A third system will be installed at the Metra site in summer 2016
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Preliminary Data

• Automated DAQ system collects an average of:

– 154 train data files per day at the MetroLink site

• Tangent location

• Maximum operating speed: 55 mph (88 km/h)

• Deployed on March 18, 2016

– 88 train data files per day at the New York City 

Transit site

• Curve location: 3.6° (485 m radius)

• Maximum operating speed: 30 mph (48 km/h)

• Deployed on April 25, 2016
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MetroLink Light Rail Vehicles
Siemens SD-400 & SD-460

• 2-vehicle (12 axle) trainsets

• Traction motor and gearbox locations:

• Normal trainset configuration:
A B B A

1    2 3    4 5    6 7 8 9   10 11  12

B A
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Box Plot Background

Max 

(within 

fences)

Min 

(within 

fences)

• Box plots are great to:

– Visualize outliers

– Compare variability of different cases

– Check for symmetry 

– Check for normality

Median
IQR

Q3 (75th 

Percentile)

Q1 (25th 

Percentile)

Lower inner fence 

(Q1-1.5×IQR)

Outlier
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Light Rail Vertical Loads
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Field Data Collection Conclusions

• Automated data collection systems can be deployed at 

remote locations and will run reliably for long durations

• In-service wheel loads may be up to 1.5 times more 

than the static wheel load for a rail transit vehicle

• Large amounts of data collected at automated sites 

requires automated or semi-automated data processing
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Future Work

• Further expand the understanding of vehicle and 

infrastructure characteristics for rail transit systems

• Incorporate field data to evaluate the effectiveness of 

dynamic factor models and rail seat load models for 

light rail and heavy rail systems

• Install automated data collection system on commuter 

rail transit system (Metra, Chicago, IL, USA)
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2016 International Crosstie &

Fastening System Symposium
• Co-organized by: RailTEC, AREMA 

Committee 30 (Ties), Railway Tie 

Association (RTA)

• Three day conference with presentations, 

discussions, and a technical tour

• 14-16 June 2014 – Sessions on UIUC 

campus in Champaign, IL

• 15 June 2014 – Technical tour to UIUC’s 

Research and Innovation Laboratory (RAIL)

– NDT Corp. Demonstration Outside RAIL

• Keynote address by David Connell, UPRR 

VP Engineering Retired

• Draft program released

• To date:

– 38 presentations accepted

– 14 supporters

– Registration open
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