High Strength Reduced Modulus Concrete for Railroad Crossties

Dimitris C. Rizos

Director of Advanced Railroad Technology Group Department of Civil and Environmental Engineering University of South Carolina

William W. Hay Railroad Engineering Seminar

January 27, 2017

- B Campuses more than 45,000 students
- Location: Columbia, S.C.
- Organization: 14 colleges and schools
- Degree Programs: more than 324
- Enrollment: more than 30,000 (Columbia)
- Faculty: approximately 1,560

Environmental Engineering

OBJECTIVES:

Nationally Recognized Research and Education Program

Nucleus of Excellence within CEE and USC to support industry

Promote Railroads in SC and the USA

Dimitris C. Rizos Director Infrastructure

Juan Caicedo System Prognosis

Robert Mullen Reliability& Risk

Dave Clarke

Michael Sutton Experimental Mechanics

Rail Transportation

Inthuorn Sasanakul Geotechnical Engineering

Nathan Huynh **Operations &** Logistics

Michael Meadows Hydraulics & Education

Dallas Richards Education, Industry Liaison

Organization

2015-date

Graduate Certificate, ME, MSc, PhD

Aug. 2011 ART Group Fall 2011-Spring 2014

Curriculum Development & Student Recruitment **date** Research Program Development

Fall 2012-

Industry Liaisons

🔼 Courses Offered At a Glance

Course	Fall	Spr	Smr
ECIV 789: Design Project-Railroad Engineering		•	
ECIV 580: Infrastructure Planning and Design	٠		
ECIV 581: Infrastructure Maintenance and Inspections	0		
ECIV 582: Operations and Logistics		٠	
ECIV 588: Analysis & Design of Railroad Bridges	•		
ECIV 784: Dynamics of Railway Systems		•	
ECIV 797: Multimodal Transportation Systems	•		
ECIV 707: Management of Engineering Projects			•
ECIV 708: Risk Analysis of Engineering Applications			•
MGMT 718: Management of Human Resources		•	

Over 250 students attended classes in the last 3 years

APOGEE

A Program of Graduate Engineering Education

Help engineering professionals earn graduate credit/degree while maintaining full-time employment and without the constraints of oncampus attendance.

Allows instructors to deliver lectures from anywhere in the world

Facilitates the development of shared curricula

US News & World Report has awarded our APOGEE program "Best Online Programs Graduate Education 2013" with a rank of 28 in the nation.

Vision System Development for Full Field Measurements

- 2D and 3D Systems Developed at the University of South Carolina over the last 30+ years
- Proven technology successfully applied to other industries
- Typical 3D System: 2 cameras and a computer setup
 - VIC-3D software by Correlated Solutions is used

A Vision System Development

A Vision System Development

System Calibration (50-100) images

Images	Data	Calibration	
Camera 1			
Center x: 1686.4	1 pixel		
Center y: 1331.0	3 pixel		
Focal length x: 4	795.94 pixel		
Focal length y: 4	799.28 pixel		
Skew: -2.19237			
Kappa 1: -0.1600	01		
Kappa 2: 0			
Kappa 3: 0			
Camera 2			
Center x: 1682.7	6 pixel		
Center y: 1296.2	7 pixel		
Focal length x: 4	761.49 pixel		
Focal length y: 4	764.16 pixel		
Skew: -1.57112			
Kappa 1: -0.1660	09		
Kappa 2: 0			
Kappa 3: 0			
 Transformation 			
Alpha: 0.520279	deg		
Beta: -3.09018 d	leg		
Gamma: 0.76426	69 deg		
Tx: 110.27 mm			
Ty: 1.25525 mm			
Tz: 2.64961 mm			
Baseline: 110.30	9 mm		

A Vision System Development

Take initial set of images before load is introduced SET 0

Left Camera – Set O

Right Camera – Set 0

Left Camera

Load specimen

Right Camera

Vision System Development

Take another set of images after load is applied SET 1

Left Camera – Set 1

Right Camera – Set 1

Compute 3-D displacement and strain fields through image correlation of two sets

EN 🔺 🏟 🏲 🙀

SOUTH CAROLINA

A System Verification in the Laboratory

Verification of results with strain gage measurements

System Verification in Laboratory

Design of High Strength Low Modulus Concrete Crossties

- Historical Background
- Hypothesis
- Material Development and Characterization
- Prototype Tie Design and Fabrication
- Product Qualification
- Benefits
- Conclusions

Historical Background

Hypothesis

Outline

- Material Development and Characterization
- Prototype Tie Design and Fabrication
- Product Qualification
- Benefits
- Conclusions

Æ **Historical Background**

SCDOT Research Project

HPC for Highway Bridges

Local Aggregates

SCDOT Mixture Designs

FHWA HPC Performance Grade Performance **Standard Test** Characteristic Method 1 2 3 4 69<x<97 MPa Strength AASHTO T22 41<x<55 MPa 55<x<69 MPa x≥97 MPa (x=compressive strength) ASTM C39 $(6 \le x \le 8 \text{ ksi})$ $(8 \le x \le 10 \text{ ksi})$ $(10 \le x \le 14 \text{ ksi})$ $(x \ge 14 \text{ ksi})$ Elasticity 28<x<40 GPa 40<x<50 GPa x>50 GPa ASTM C469 $(4 \le x \le 6 \cdot 10^6 \text{ psi})$ $(6 \le x < 7.5 \cdot 10^6 \text{ psi})$ $(x \ge 7.5 \cdot 10^6 \text{ psi})$ (x=modulus of elasticity) Shrinkage ASTM C157 800>x>600 600>x>400 400>x (x=microstrain) 75>x>60/MPa 60>x>45/MPa 45≥x>30/MPa 30/MPa < xCreep ASTM C512 (x=microstrain/pressure unit) $(0.52 \ge x \ge 0.41/psi)$ $(0.41 \ge x > 0.31/psi)$ $(0.31 \ge x > 0.21/psi)$ $(0.21/psi \leq x)$ Freeze-thaw durability AASHTO T161 (x=relative dynamic modulus ASTM C666 60%≤x<80% 80%<x of elasticity at 300 cycles) (Procedure A) Scaling (x = visual rating of theASTM C672 x=4.5 x=2,3 x=0.1 surface after 50 cycles) Abrasion 2.0>x>1.0 mm x<0.5 mm 1.0>x>0.5 mm **ASTM C944** (0.04 > x > 0.02 in.)(x= average depth of wear) (0.08 > x > 0.04 in.)(x<0.02 in.) AASHTO T277 **Chloride Penetration** 800>x 3000>x>2000 2000>x>800 **ASTM C1202** (x=Coulombs)

Table 2.1 Grades of Performance Characteristics for High Performance Structural Concrete (Goodspeed et al., 1996)

- Aggregates from specific quarries
- HPC Classified as Grade 1 or 2 based on most properties
- Did not meet Grade based on Elastic Modulus

HPC Rejected

Performance Characteristic	Standard Test Method	Batch No.	Experimental Results	FH \ Perfor. Grade
Strength (MPa (psi))	ASTM C39	1	47.5 (6890)	1
		2	51.9 (7525)	1
		3	55.2 (8003)	2
		4	57.6 (8360)	2
Elasticity	ASTM C469	1	21.3 (3089)	< 1
		2	19.4 (2811)	< 1
(GPa (ksi))		3	24.1 (3492)	< 1
		4	24.1 (3501)	< 1
Shrinkage (microstrain)	ASTM C157	Shrinkage tests were not performed		
Creep (microstrain/pressure unit)	ASTM C512		Creep tests were no	ot performed.
Freeze-thaw durability		1		
(relative dynamic	ASTM C666	2		
modulus of elasticity at	(Procedure A)	3		
300 cycles, %)		4	>90	2
Scaling (visual rating of the surface after 50 cycles)	ASTM C672	1	4	1
		2	3	2
		3		
		4		
Abrasion (average depth of wear, mm (in.))	ASTM C944	1	1.410 (0.0555)	1
		2	1.711 (0.0674)	1
		3		
		4		
loride Penetration	ASTM C1202	1	2144	1
		2	2632	1
Coulombs)		3	2683	1
		4	1065	2

🛺 Historical Background

Historical Background

Hypothesis

- Material Development and Characterization
- Prototype Tie Design and Fabrication
- Product Qualification
- Benefits
- Conclusions

A Hypothesis

Benefits of Using Higher Resilience Concrete in Prestressed Ties:

- Better load distribution
- Smoother stress gradient
- Lower stress amplitudes
- Delay of onset of damage
- Relative rigidity

Critical Location	Stress Reduction due to HSRM-HPC (%)
I	15%
11	50%
Ш	48%

Historical Background

Hypothesis

Material Development and Characterization

- Prototype Tie Design and Fabrication
- Product Qualification
- Benefits
- Conclusions

- US Major Tie Manufacturer Design
 - Min. 28 Day = 7000psi
 - Min. Transfer Strength = 4000psi
- Direct substitution of aggregates
- A Aggregate Sources
 - CA1: Plum Run Stone (Standard)
 - CA2: Weathered Granite Source A
 - CA3: Weathered Granite Source B
 - CA4: Weathered Granite Source C

Addition Material Development and Characterization

Addition Material Development and Characterization

Tests on Rock, Aggregate, Mortar and Concrete

	Test	ASTM
se Ag.	Los Angles Abrasion Test	C131
	Sieve Analysis (Particle Size Distribution)	C136
Coar	Bulk Density and Voids	C29
0	Density, Specific Gravity and Absorption	C127
÷	Compressive Strength	D7012 - 14
Ro	Modulus of Elasticity	D7012 - 14
	Slump	C143
	Density	C138
ete	Air Content by pressure method	C231
onci	Compressive Strength of Concrete	C39
Ŭ	Flexural Strength of Concrete	C78
	Modulus of Elasticity of Concrete	C469
	Shrinkage	C157
Mortar	Compressive Strength	C 109- 13
	Tensile Strength	C 307-12
	Modulus of Elasticity	C 580-02
	Setting Time (Initial and Final)	C191 - 13

Durability - Abrasion

Procedures and Lapping Machine at UIUC

- 12 4x8 specimens from each Mix
- Specimens to UIUC on 6/22 (28 day min)

Abrasion Resistance Testing of Concrete Railway Crossties, E. Van Dam, et al. http://www.purdue.edu/discoverypark/nextrans/assets/pdfs/Van%20Dam

A Concrete Strength vs Age

Specimen Age (days)

Elastic Modulus of Concrete vs Age

Concrete Modulus vs Strength (fc'>7 ksi)

Property		AGGREGATE						
		KSA (CA1)	CA2	CA3	CA4			
Aggreg	Voids	42.73	42.51	39.90	39.10			
	Density (lb/ft ³)	161.65	164.50	165.00	167.50			
	Relative Density	2.58	2.60	2.65	2.69			
	LA Abrasion	27.5%	33.9%	44.3%	46.0%			
Fresh Concr	Density (lb/ft ³)	152.90	153.73	154.14	158.55			
	Yield (yd ³)	0.15	0.15	0.14	0.14			
	Cement Content (lb/yd³)	618.23	621.53	623.21	632.05			
	Slump (in)	7.00	6.50	7.50	4.00			
	Air Content (%)	5.0%	5.9%	4.8%	4.0%			
Concrete	Compressive Strength (psi)	8.8E+03	8.8E+03	9.2E+03	8.7E+03			
	Increase/Reduction %	0%	0 %	4%	-1%			
	Flexural Strength (psi)	0.13fc'	0.125fc'	0.12fc'	-			
	Elastic Modulus (psi)	5.6E+06	3.6E+06	3.2+06	2.8E+06			
	Elastic Modulus Reduction %	0%	-37%	-43%	-50%			
	Lapping Test Abrasion Rate (mm/min)	0.042	0.023	0.029	0.039			

Property		AGGREGATE					
		KSA (CA1)	CA2	CA3	CA4		
reg	Voids	42.73	42.51	39.90	39.10		
	Density (lb/ft ³)	161.65	164.50	165.00	167.50		
∖ 99	Relative Density	2.58	2.60	2.65	2.69		
∢	LA Abrasion	27.5%	33.9%	44.3%	46.0%		
Fresh Concr	Density (Ib/ft ³)	152.90	153.73	154.14	158.55		
	Yield (yd ³)	0.15	0.15	0.14	0.14		
	Cement Content (lb/yd ³)	618.23	621.53	623.21	632.05		
	Slump (in)	7.00	6.50	7.50	4.00		
	Air Content (%)	5.0%	5.9%	4.8%	4.0%		
Concrete	Compressive Strength (psi)	8.8E+03	8.8E+03	9.2E+03	8.7E+03		
	Increase/Reduction %	0%	0%	4%	-1%		
	Flexural Strength (psi)	0.13fc'	0.125fc'	0.12fc'	-		
	Elastic Modulus (psi)	5.6E+06	3.6E+06	3.2+06	2.8E+06		
	Elastic Modulus Reduction %	0%	-37%	-43%	-50%		
	Lapping Test Abrasion Rate (mm/min)	0.042	0.023	0.029	0.039		

- Historical Background
- Hypothesis
- Material Development and Characterization
- Prototype Tie Design and Fabrication
 - □ 9/2015 and 7/2016
- Product Qualification
- Benefits
- Conclusions

Prototype Tie Geometry

Concrete Elastic Modulus vs. Age

Transfer Length	HSRM-HPC	Standard
Average	11.9 in	16.2 in
Std. Deviation	1.0 in	2.5 in
Coeff. Var.	8.4%	15.4%

- Historical Background
- Hypothesis
- Material Development and Characterization
- Prototype Tie Design and Fabrication

Product Qualification

- Benefits
- Conclusions

Design Performance - AREMA

4.9.1.1 Sequence of Design Tests (Tie "1")

- a. Rail Seat Vertical Load Test Rail seat A (4.9.1.4)
- b. Center Negative Bending Moment Test (4.9.1.6)
- c. Center Positive Bending Moment Test (4.9.1.7)
- d. Rail Seat Vertical Load Test Rail seat B (4.9.1.4)
- e. Bond Development, Tendon Anchorage, and Ultimate Load Test Rail seat A (4.9.1.8)

SOUTH CAROLINA

f. Rail Seat Repeated Load Test – Rail seat B(4.9.1.5)

4.9.1.2 Sequence of Design Tests (Tie "2")

- a. Fastening Insert Test (4.9.1.9)
- b. Fastening Uplift Test (4.9.1.10)
- c. Electrical Resistance and Impedance Test (4.9.1.14)

AREMA Sequence of Design Tests (Tie "1")

UNIVERSITY OF SOUTH CAROLINA

2 3-D Stereovision System for Strain Field Measurements

2 3-D Stereovision System for Strain Field Measurements

AREMA Sequence of Design Tests (Tie "1")

Tie ID -		Rail Se	Rail Seat A		Rail Seat B		Center	
		M +	M -	M +	M -	M +	M -	
be	HSRM-Q1	Pass	Pass	Pass	Pass	Pass	Pass	
	HSRM-Q2	Pass	Pass	Pass	Pass	Pass	Pass	
tot	HSRM-Q3	Pass	Pass	Pass	Pass	Pass	Pass	
Pro	HSRM-Q4	Pass	Pass	Pass	Pass	Pass	Pass	
	HSRM-Q5	Pass	Pass	Pass	Pass	Pass	Pass	
	STANDARD-Q1	Pass	Pass	Pass	Pass	Pass	Pass	
ər	STANDARD-Q2	Pass	Pass	Pass	Pass	Pass	Pass	
selir	STANDARD-Q3 (9-1)	Pass	Pass	Pass	Pass	Pass	Pass	
Ba	STANDARD-Q4 (11-3)	Pass	Pass	Pass	Pass	Pass	Pass	
	STANDARD-Q7	Pass*	Pass	Pass	Pass	Pass	Pass	
Other	STANDARD-Q5-A	Pass*	Pass	Pass	Pass	Pass	Pass	
	STANDARD-Q6-A	Pass	Pass	Pass	Pass	Pass	Pass	

*Marginally

Tie ID		Rail Seat A					
		€prestress (+/- 10%)	Ecrack	P_{crack}	1.5P	Ρυ	Strand Slippage
	HSRM-Q1		- ~320με -	56	Pass	>100	No
/pe	HSRM-Q2						
Prototy	HSRM-Q3	~800 με		57	Pass	>100	No
	HSRM-Q4						
	HSRM-Q5			52	Pass	96	No
	STND-Q1						
ЭС	STND-Q2						
seliı	STND-Q3 (9-1)	~500 με	~220 με	57.9	Pass	88.9	No
Ba	STND-Q4 (11-3)			52.1	Pass	105.3	No
	STND-Q7			49	Pass	97	No
Other	STND-Q5-A						
	STND-Q6-A						
A Fastener Pullout and Torque Tests

Crosstie	Rail Seat	Location	Pull-out (12kips)	Torque (250lb-ft)
Rocla	Α	Field	PASS	PASS
		Gauge	PASS	PASS
	В	Field	PASS	PASS
		Gauge	PASS	PASS
USC Prototype	Α	Field	PASS	PASS
		Gauge	PASS	PASS
	В	Field	PASS	PASS
		Gauge	PASS	PASS

A Fastener Uplift Tests

Crosstie	Rail Seat	Result	
Standard Crocctio	Α	PASS	
	В	PASS	
USC Brototype Creatio	Α	PASS	
USC Frolotype Crossile	e B PASS		

0.20

Crosstie	Crosstie Level of Distress	
Standard	Crack Initiation at	31.6
Stanuaru	Insert Pulled out	34.6
UCDM	Crack Initiation	33.2
пэкм	Insert Pulled out	35.1

Standard

HSRM

- Historical Background
- Hypothesis
- Material Development and Characterization
- Prototype Tie Design and Fabrication
- Product Qualification
- Benefits / Performance Assessment
- Conclusions

Flexural Tests – Variable Support

Tie Performance – Flexural tests

Standard Tie

HSRM Tie

(center-binding conditions at 20 kips)	Standard		HS	HSRM		CXT505S	
End Displacement (in/mm)	-0.314	-7.98	-0.334	-8.48	-0.234	-5.94	
Expected Gauge-Widening (in/mm)	0.119	3.02	0.114	2.90	0.101	2.57	
Center Moment (kip-in/kNm)	-309	-34.8	-306	-34.5	-413	-46.6	

Rail Seat – Ultimate Positive

P=60 kips Same Scale

Ŵ

🙅 P=90 kips – Same Scale

Ð

Fatigue - Center Negative

A Fatigue – Center Negative

Test Setup

Fatigue – Center Negative: Testing Procedure

- UNIVERSITY OF SOUTH CAROLINA
- 1. Specimen loaded to 90% of design load (13.5 kips)
 - Strain field captured every 2 kips
- Cyclic Loading in the range 2-13.5 kips at a rate of 2 load cycles/sec
- At 500,000 load cycles cyclic loading is paused and the specimen is loaded statically to 90% of design load
 - Strain field captured every 2 kips
- Cyclic load resumes and continues for ~48 hours (~345,000 additional cycles)
- Cyclic loading is paused and the specimen is loaded statically to 90% of design load
 - Strain field captured every 2 kips
- 6. Steps 4-6 are repeated until number of loading cycles exceeds 3 million.

A Fatigue – Center Negative: Testing Procedure (cont'd)

- 7. A crack is induced to the first line of strands and the corresponding load P_{crack} is recorded as 17.5kips (to first strand).
 - Strain field captured every 2 kips
- Cyclic Loading in the range 2 kips 110% of design load (2-16.5kips) at a rate of 2 load cycles/sec.
- 9. At 500,000 load cycles cyclic loading is paused and the specimen is loaded statically to design load.
 - Strain field captured every 2 kips
- 10. Cyclic load resumes and continues for ~48 hours (~345,000 additional cycles)
- 11. Cyclic loading is paused and the specimen is loaded statically to 110% design load (16.5kip)
 - Strain field captured every 2 kips
- 12. Steps 10-12 are repeated until number of loading cycles exceeds 3 million.
- 13. Specimen is loaded to failure
 - Strain field captured every 2 kips

Stage 1 – No Crack 3,000,000 cycles

- No significant changes in the strain field as load accumulates
- No cracks observed through visual inspection and DIC measurements

Stage 2 - Cracking induced to first strand Additional 3,000,000 cycles

exx [um/m] -Lagrange 710 627.5 545 462.5 380 297.5 215 132.5 50 -32.5 -115 -197.5 -280 -362.5 -445 -527.5 -610

16.5 kip , 0 cycles

H. exx [um/m] -Lagrange 710 627.5 545 462.5 380 297.5 215 132.5 50 -32.5 -115 -197.5 -280 -362.5 -445 -527.5 -610

16.5 kip, 333250 cycles

11 exx [um/m] -Lagrange 710 627.5 545 462.5 380 297.5 215 132.5 50 -32.5 -115 -197.5 -280 -362.5 -445 -527.5 -610

16.5kip, 848250 cycles

exx [um/m] -Lagrange 710 627.5 545 462.5 380 297.5 215 132.5 50 -32.5 -115 -197.5 -280 -362.5 -445 -527.5 -610

16.5kip, 1348000 cycles

16.5kip, 1848000 cycles

16.5kip , 2174000 cycles

16.5kip , 2520000 cycles

16.5kip , 3000000 cycles

- Crack location is evident
- Stress redistribution during first 800,000 cycles
- No additional cracks observed
 - visual inspection and DIC measurements
- Existing crack did not propagate
 - visual inspection and DIC measurements

Stage 3 - Loading to Failure After 6,000,000 total load cycles

HSRM Ultimate load 34kips (standard 30kips)

 Multiple shallow cracks indicate load redistribution in HSRM (fewer, deeper cracks in standard)

Parametric Studies– FEM Analysis

$$L/V = 0.0, 0.2, 0.4$$

Elastic Modulus Values	
Mpa (ksi)	
Standard	HSRM
31,918	23,018
(4,629)	(3,338)

 $[\]sim 27\%$ reduction

Ballast: E = 200 (29)

Example: Full Support L/V=0.4 (preliminary)

Max Principle Stress – Example In Progress

HSRM

Standard

SOUTHCAROLINA

3%-12% stress reduction

Maintains high strength

Smoother stress gradients in tie and stress redistribution after cracking

Stress amplitude reduction

Onset of damage delayed

Better load distribution on track ?

- Historical Background
- Hypothesis
- Material Development and Characterization
- Prototype Tie Design and Fabrication
- Product Qualification
- Benefits
- Conclusions & Future Work

- Residual Strength (Post Damage)
- Dynamic DIC measurements
- Effects on load distribution on track
- In situ testing and monitoring

- HSRM-HPC similar properties as Limestone HPC except Elastic Modulus (up to 50% reduction)
- HSRM Ties Passed all AREMA Qualification Tests and meets or exceeds standard tie performance

A technology based modification in concrete tie technology that improves the safety of rail service and maintenance operations without impacting fabrication cost and process

U.S. Department of Transportation Federal Railroad Administration

Grant Number DTFR53-14-C-00023

Dr. Juan Caicedo Dr. Michael Sutton Dr. Robert Mullen Ali Abdulqader Sally Bartelmo Albert Ortiz Adam Zeitouni Sreehari Rajan Katil

Kevin Barberena Spencer Green Josh Breed Melissa Brueckner Brigitte Shumpert

Thank You!

