Quantification of Ballast Deterioration Performance With and Without Ballast Mats - A Laboratory Study

2017 Joint Rail Conference

Philadelphia, PA

5 April 2017

Arthur de Oliveira Lima, Marcus S. Dersch, Yu Qian,

Erol Tutumluer and J. Riley Edwards

Progress Rail

A Caterpillar Company

Outline

- Introduction
- Motivation and Goals for Research
- Laboratory Experimental Program
- Ballast Deterioration Results
- Conclusions
- Future Work

Introduction

- Ballast mats (or under-ballast mats) are elastic pads installed under the ballast layer or concrete slab, depending on the type of track structure
- The component is typically manufactured using natural rubber, recycled tire rubber, or polyurethane foam
- The study of ballast mats was initiated in the 1960's by the Japanese Railways for use in the Tokaido Shinkansen line
- European passenger and freight railways have also employed/studied ballast mats since early 1980's
- In the last decades in North America, Class I railroads have primarily utilized ballast mats on ballast deck bridges and tunnels, but limited research has been conducted to date

Motivation and Goals for Research

- Major benefits from the use of ballast mats are dependent on its application environment:
 - Transit: reduction of ground-borne vibrations
 - Freight/Passenger: reduction of ballast degradation and track stiffness in bridges
- The main objectives of this research are to:
 - Quantify ballast mat properties
 - Quantify ballast mat benefits
 - Study the effect of test variables (support, loading, etc.)
 - Develop tools to predict track behavior

Müller, G. & M. Möser (Eds.). 2013. *Handbook Of Engineering Acoustics*. Springer Berlin Heidelberg, Berlin, Heidelberg.

Mademann, C. and D. Otter. 2013. *Effects Of Ballast Depth And Degradation On Stresses In Concrete Bridges*. Transportation Technology Center, Inc.

Motivation and Goals for Research

- Major benefits from the use of ballast mats are dependent on its application environment:
 - Transit: reduction of ground-borne vibrations
 - Freight/Passenger: reduction of ballast degradation and track stiffness in bridges
- The main objectives of this research are to:
 - Quantify ballast mat properties
 - Quantify ballast mat benefits
 - Study the effect of test variables (support, loading, etc.)
 - Develop tools to predict track behavior

Müller, G. & M. Möser (Eds.). 2013. *Handbook Of Engineering Acoustics*. Springer Berlin Heidelberg, Berlin, Heidelberg.

Mademann, C. and D. Otter. 2013. *Effects Of Ballast Depth And Degradation On Stresses In Concrete Bridges*. Transportation Technology Center, Inc.

Motivation and Goals for Research

- Major benefits from the use of ballast mats are dependent on its application environment:
 - Transit: reduction of ground-borne ____ vibrations
 - Freight/Passenger: reduction of ballast ____ degradation and track stiffness in bridges
- The main objectives of this research are to:
 - Quantify ballast mat properties
 - **Quantify ballast mat benefits**
 - Study the effect of test variables (support, loading, etc.)
 - Develop tools to predict track behavior

Transportation Technology Center, Inc.

Primary

Müller, G. & M. Möser (Eds.). 2013. Handbook Of Engineering Acoustics. Springer Berlin Heidelberg, Berlin, Heidelberg.

Laboratory Experimental Program

- Objective: Quantifying ballast mat's effects to the degradation of ballast material in a controlled laboratory settings
- Location: Research and Innovation Laboratory (RAIL) at Schnabel, UIUC
 - Pulsating Load Testing Machine (PLTM): Biaxial loading frame owned by Progress Rail
- Instrumentation: Potentiometers deployed to capture vertical displacement at multiple locations
- Loading: Servo hydraulic actuator used to apply vertical load

Test Apparatus

• Ballast box:

- Adapted design from German DIN 45673 – Part 5 standard for testing of mechanical fatigue performance of ballast mats
- Standard 12" ballast layer

- Ballast Box Constructions:
 - With Ballast Mat

Without Ballast Mat

Ballast Mat Sample Characteristics

- Ballast mat sample
 - Type 4
 - Size: 27.5" x 27.5"
 - Construction
 - Profiled mat bonded to flat protective layer
 - Mat Thickness (Min. / Max.)
 - 0.197" / 0.394"

Ballast Gradation

- Washed gradation was obtained prior to testing
 - Ballast was found to be consistent with AREMA Size No. 4A gradation
 - Content passing the $\frac{3}{8}$ size sieve was considered as fines

Size No. (See Note 1)	Nominal Size Square Opening	Percent Passing									
		3″	2¹/₂ ″	2″	1½″	1″	3/4"	1/2"	d″	No.4	No. 8
24	21/2"- 3/4"	100	90-100		25-60		0-10	0-5	-	-	-
25	21⁄2" - d"	100	80-100	60-85	50-70	25-50	-	5-20	0-10	0-3	-
3	2" - 1"	-	100	95-100	35-70	0-15	-	0-5	-	-	-
4A	2" - 3/4"	-	100	90-100	60-90	10-35	0-10	-	0-3	-	-
4	1½" - ¾"	-	-	100	90-100	20-55	0-15	-	0-5	-	-
5	1" - d"	-	-	-	100	90-100	40-75	15-35	0-15	0-5	-
57	1" - No. 4	-	-	-	100	95-100	I	25-60	١	0-10	0-5
Note 1: Gradation Numbers 24, 25, 3, 4A and 4 are main line ballast materials. Gradation Numbers 5 and 57 are yard ballast materials.											

AREMA Recommended Ballast Gradations

Original Ballast Gradation

Testing Protocols

Cyclic sinusoidal loading at 5 Hz

- Ballast characteristics obtained before and after complete testing

Final Ballast Gradations

Material Weight Retained by Size

Sieve Size [in]	Original	With Ballast Mat	‰∆	Without Ballast Mat	‰∆
2.5	0.0	0.0	0.0	0.1	0.1
2	6.1	6.4	0.3	5.6	-0.5
1.5	28.6	27.3	-1.3	28.4	-0.3
1	42.0	41.8	-0.2	42.9	0.9
0.75	16.1	16.8	0.7	16.2	0.1
0.375	7.1	7.7	0.6	6.9	-0.2

Note: All values in % retained by weight

• No particle breakage could be observed

System Vertical Transient Deformation

Conclusions

- Ballast gradation results shown small changes in particle size distribution
 - Slight shifts in the gradation demonstrated by increase in retained material weight in smaller sieves
- Attrition is seen as the sole mechanism of ballast degradation for this experiment
 - This phenomenon results from the relative movement between particles occasioning in frictional wear of particle surface characteristics

Conclusions

- Important field degradation mechanism of particle breakage could not be observed in either test case
 - Changes to testing procedures are to be considered in order to more realistically simulated field degradation conditions
 - This would provide better insights into the effects of ballast mats to the protection of ballast installed over rigid structures

Future Work

- Considering evaluating additional metrics of ballast degradation
 - Loss of material
 - Surface Texture
 - Angularity
 - Shape
- Explore changes in test procedures
 - Increase load
 - Modification of loading waveform

Future Work

- Further investigate the effects of ballast mats to the vertical transient deformations of a ballast structure over a rigid support
 - This is important when assessing its effectiveness in mitigating transition zone problems
- Conduct similar experimental matrix on two other ballast mat sample types intended for transit applications

Acknowledgements

- Funding for this project has been provided by:
 - Progress Rail
- For assistance with manufacturing of the ballast box:
 - UIUC Machine Shop
- For their assistance with laboratory setup and ballast sieving:
 - Brendan Schmit, Kaila Simpson, Brevel Holder and Quinn Todzo

Thank You Questions?

Arthur De Oliveira Lima

Graduate Research Assistant email: aolima@illinois.edu

Marcus S. Dersch Senior Research Engineer email: mdersch2@illinois.edu

Yu Qian Research Engineer email: yuqian1@illinois.edu

Erol Tutumluer Professor email: tutumlue@illinois.edu

J. Riley Edwards Research Scientist and Senior Lecturer email: jedward2@illinois.edu

