

# **Reducing Concrete Crosstie Risk**

### Designing A New Generation of High Performance Concrete Crossties

June 14, 2016

Urbana, IL

**Ryan Kernes, Mauricio Gutierrez** 



## **Presentation outline**

- Introduction to GIC
- Vision for reduced-risk design
- Field experience
- Path forward



- GIC has been developing optimal and innovative construction and engineering solutions for 40 years
  - Specializing in prestressed concrete elements
  - Complete process integration
    - Design, production, and installation
  - Focus on superior technology and quality

## Introduction to GIC Background

- Pursuing total satisfaction for clients, employees, and partners
- Serving communities
  - Headquarters in Monterrey, NL, Mexico
  - Engineering office in Dallas, TX, USA
  - Projects completed in Mexico, USA, Canada





### Introduction to GIC Background

• Design and manufacturing beams, columns, girders, wall panels, slabs, cellular concrete blocks, crossties, rail seat blocks, etc.







## Introduction to GIC

Concrete tie objectives

- Optimize crosstie design and manufacturing processes to redefine high performance
  - Clean-slate approach
  - Combining advanced manufacturing and concrete technologies with innovative tie designs
- Increase robustness and durability with features that mitigate existing failure modes, reducing user risk
- Improve efficiency of track structure

# Vision for reduced-risk design





## Features of reduced-risk design









# Vision for reduced-risk design





## Rail seat interface

- Reduced risk of rail seat deterioration (RSD)
  - 21% larger bearing area, pressure decreased by 17%, assuming
    6" uniform distribution (tangent track)
  - 25% larger bearing area, pressure decreased by 20%, assuming
    1" concentrated field side distribution (high-degree curve)





## **UIUC Rail Seat Load Index (RSLI)**

- A quantifiable design value which describes the sensitivity of the rail seat load distribution to changes in the L/V force ratio
- Rail Seat Load Index (RSLI) is defined as the percent of total rail seat load imparted onto a critical region of the rail seat, defined as the area of the rail seat not more than 1 inch (25.4 mm) from the field side shoulder, normalized to a theoretical, uniform distribution.



$$RSI = \frac{\frac{[Load in Critical Area]}{[Total Rail Seat Load]}}{\frac{1}{6}} = 6 * \frac{[Load in Critical Area]}{[Total Rail Seat Load]}$$

Greve, M.J., M.S. Dersch, J.R. Edwards and C.P.L. Barkan. 2015. Evaluation of Laboratory and Field Experimentation Characterizing Concrete Crosstie Rail Seat Load Distributions. In: *Proceedings of the 2015 Joint Rail Conference*, San Jose, CA, March 2015.

# Vision for reduced-risk design





### **Wire-concrete interface**

- Eliminated risk of end splitting and longitudinal cracking using pretensioned load transfer plate system
  - Provides compression beginning at the crosstie ends
    - Reduces radial stress along wires
      - Results in a more uniform distribution of prestress forces
      - Less prestress force, reduced stress in concrete



### Wire-concrete interface

Less force along wire

• Smaller force, less concrete and steel needed to support heavy-haul loads





### Wire-concrete interface

Heavy-haul structural capacity

• G13 passed 100% of AREMA design qualification tests

#### AREMA Ch. 30 Section 4.9.1.1 – Crosstie Flexural Strength

| Test  | Load        | Crosstie        |
|-------|-------------|-----------------|
|       | (kips)      | G13-1 G13-2     |
| RS- A | 32          | Pass Pass       |
| RS+ A | 64          | Pass Pass       |
| Ce-   | 17          | Pass Pass       |
| Ce+   | 13          | Pass Pass       |
| RS- B | 32          | Pass Pass       |
| RS+ B | 64          | Pass Pass       |
| RS+ B | (1st crack) | 77 kips 79 kips |
| Ce-   | (1st crack) | 22 kips 24 kips |



# Vision for reduced-risk design





## **Tie-ballast interface**

- Approximately **16% more bearing area** in 24" tamping zone
  - Pressure decreased by 14% assuming uniform distribution
- Shorter crosstie length reduces track width by 6" saving 94 tons of ballast per mile





# Vision for reduced-risk design





## **Dowel-concrete interface**

- Dowel-based fastening system needs reinforcement and/or revised dowel design to prevent transverse stress perpendicular to dowel hole
- Steel spiral reinforcement around the dowel is effective







## **BNSF Installation of G13**



#### Low tonnage TLM trial – July 2015

## **BNSF Installation of G13**









## **BNSF site visit March 2016**





## **TTCI installation of G13**



#### **Installed November 2014**









#### 29 MGT

**51 MGT** 

Test Duration: November 2014 – April 2015

## **TRE installation of G13**





#### Trinity Railway Express – Installed May 2016



## **TRE installation of G13**





### Path forward

- Lead strongly in concrete crosstie market
- Continue to prove reduced-risk design though field performance
- Increase availability for high-performance concrete crossties in several geographical regions in USA and Canada
- Drive market innovation through development of advanced technologies and reduced-risk design









## **Tie-ballast interface**

#### Lateral resistance

#### AREMA Section 2.9 Test 8 – Single Tie Push (STP)

